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National foreword
This British Standard has been prepared by Technical Committee GEL/81 and 
supersedes BS 6651:1992, which is withdrawn.
Some of the changes introduced since the publication of the previous edition 
include:

— the provision of a new lightning flash density map (Figure 1), compiled from 
data accumulated over the last ten years;
— a simple calculation, based on IEC findings, relating to buildings with 
cantilevered upper floors and the risk of side flashing from external down 
conductors to persons standing under the overhang;
— modifications to Figure 13 to clarify the positioning of air terminals on 
buildings with sloping roofs;
— modifications to Figure 28 to give additional information relating to 
flashover voltage through cracks in mortar and brickwork.

Corrigendum No. 1 (September 2000) makes corrections to the following:
Figure 1; Table 1, last row; Table 9, row 3;
Table 10, title and heading of column 1; Table 13, rows a) and f);
Figure 13, diagram 3; 19.2.1.4 equation in example of use of equation (6);
19.3.9 (deletion of last three paragraphs; 27.7 item a).

Amendment 1 introduces changes required in order to remove provisions 
conflicting with those contained in BS EN 50164-1:2000, Lightning protection 
components (LPC) — Part 1: Requirements for connection components, and           
BS EN 50164-2:2002, Lightning protection components (LPC) —                                         
Part 2: Requirements for conductors and earth electrodes.
The principle informing all the provisions of this British Standard is that of the 
“Faraday cage” form of lightning protection. The Technical Committee is aware 
of development and research on other technologies in the field of lightning 
protection that has been taking place in recent years, but it is the Committee’s 
considered opinion that the materials, extent and dimensions of the air 
terminations, down conductors, earth terminations, bonding, components, etc. as 
laid down in this code of practice be adhered to in full, irrespective of any devices 
or systems employed which are claimed to provide enhanced protection.
This standard is intended to provide guidance on the principles and practice that 
experience has shown to be important in protecting structures against damage 
from lightning. It examines the characteristics of the lightning phenomenon and 
indicates the statistical nature of the evidence on which assessments for 
protection are based. Guidance is also provided on the need for protection for 
structures in general and for specific structures that are considered to be most at 
risk; these recommendations are an economic compromise between absolute 
protection and the cost of the installation.
The protection of electronic equipment against lightning continues to be the 
subject of standardization work in the international and European Standards 
fora. However, until definitive European Standards are available for adoption as 
British Standards, the Technical Committee maintains the general advice on the 
subject which is given in Annex C.
© BSI 7 February 2005
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As a code of practice, this British Standard takes the form of guidance and 
recommendations. It should not be quoted as if it were a specification and 
particular care should be taken to ensure that claims of compliance are not 
misleading. 
WARNING Attention is drawn to the danger of installing or carrying out 
maintenance work on lightning protection systems or surge protection devices 
during a storm.
This publication does not purport to include all the necessary provisions of a 
contract. Users are responsible for its correct application.
Compliance with a British Standard does not of itself confer immunity 
from legal obligations.

Summary of pages
This document comprises a front cover, an inside front cover, pages i and vi,         
pages 1 to 131 and a back cover.
The BSI copyright notice displayed in this document indicates when the 
document was last issued.
v



vi blank



BS 6651:1999
Introduction

Introduction Lightning is a natural hazard, being the discharge of static electricity generated in parts, 
called “cells”, of storm clouds. In the UK, about one million flashes strike the ground each decade. Some 
lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly 
by causing fire and explosions. Statistics for deaths by lightning show the risk to be very low, being one in 
two million per year (see 10.3). 

This British Standard outlines the general technical aspects of lightning, illustrating its principal 
electrical, thermal and mechanical effects. Guidance is given on how to assess the risk of being struck and 
how to compile an index figure as an aid to deciding whether a particular structure is in need of protection. 
The guidance given is of a general nature and its application to specific lightning protection installations 
has to take into account the particular conditions pertaining to those installations. In cases of difficulty, 
specialist advice should be sought. 

It is emphasized that even where protection is provided it can never be completely effective in eliminating 
the risk of damage to the structure. 
NOTE 1 Some explanatory information about the recommendations of this standard is given in Annex A.

NOTE 2 All structures shown in figures are “typical” only and are not intended as designs.

NOTE 3 Guidance on the application of the standard is given in Annex B.

NOTE 4 General advice on the protection of electronic equipment against lightning is given in Annex C. 

1 Scope

This British Standard provides guidance on the design of systems for the protection of structures against 
lightning and on the selection of materials. Recommendations are made for special cases such as explosives 
stores and temporary structures, e.g. cranes and spectator stands constructed of metal scaffolding. 
Guidance is also given on the protection of electronically stored data.

The principle informing all the provisions of this British Standard is that of the “Faraday cage” form of 
lightning protection, and installations employing alternative technologies fall outside the scope of this 
British Standard.

Protection of offshore oil and gas installations does not fall within the scope of this British Standard. 
NOTE Where current-carrying conductors are directly associated with structures lying within the scope of this code of practice, 
certain recommendations relating to them are included; however, the protection of radar stations, overhead telephone wires, electric 
traction and supply lines should, on account of their special nature, be determined by the appropriate authorities.

2 Normative references
The following normative documents contain provisions which, through reference in this text, constitute 
provisions of this British Standard. For dated references, subsequent amendments to, or revisions of, any 
of these publications do not apply. For undated references, the latest edition of the publication referred to 
applies. 

BS 729, Specification for hot dip galvanized coatings on iron and steel articles.

BS 5970, Code of practice for thermal insulation of pipework and equipment in the temperature                    
range Ö100 °C to +870 °C.

BS 6330, Code of practice for reception of sound and television broadcasting.

BS 7430, Code of practice for earthing.

BS 7671, Requirements for electrical installations — IEE Wiring regulations — Sixteenth edition. 

BS EN 50020, Electrical apparatus for potentially explosive atmospheres — Intrinsic safety “i”. 

BS EN 50164-1, Lightning protection components (LPC) — Part 1: Requirements for connection components.

BS EN 50164-2, Lightning protection components (LPC) — Part 2: Requirements for conductors and earth 
electrodes.
© BSI 7 February 2005 1
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3 Definitions and abbreviations

3.1 Definitions

For the purposes of this British Standard, the following definitions apply.

3.1.1  
lightning flash
electrical discharge between cloud and earth, of atmospheric origin, comprising one or more impulses of 
many kiloamps

3.1.2  
lightning stroke
one of the single distinguishable current impulses of a lightning flash

3.1.3  
lightning strike
lightning flash attaching to a structure

3.1.4  
lightning protection system
whole system of conductors used to protect a structure from the effects of lightning

3.1.5  
air termination network
that part of a lightning protection system which is intended to intercept lightning discharges
NOTE The term “air termination” may be used in an equivalent sense.

3.1.6  
down conductor
conductor that connects an air termination with an earth termination (see 3.1.10)

3.1.7  
bond
conductor intended to provide electrical connection between the lightning protection system and other 
metalwork and between various portions of the latter

3.1.8  
joint
mechanical and/or electrical junction between two or more portions of a lightning protection system

3.1.9  
test joint
joint designed and situated so as to enable resistance or continuity measurements to be made

3.1.10  
earth termination network
that part of a lightning protection system which is intended to discharge lightning currents into the general 
mass of the earth
NOTE 1 All points below the test points in down conductors are included in this term.

NOTE 2 The term “earth termination” may be used in an equivalent sense.

3.1.11  
earth electrode
conductive part which is intended to conduct lightning current, or a group of conductive parts in intimate 
contact with and providing an electrical contact with the earth
NOTE It may comprise, for example, one or more driven rods, horizontal conductors or reinforced concrete foundations. 
2 © BSI 7 February 2005
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3.1.12  
ring earth electrode
earth electrode forming a closed loop round the structure below or on the surface of the earth, or within or 
under the foundations 
NOTE A ring earth electrode may be used to interconnect other earth electrodes.

3.1.13  
indicating plate
plate detailing the number and position of earth electrodes 

3.1.14  
reference earth electrode 
earth electrode capable of being completely isolated from an earth termination network for use in periodic 
testing 

3.1.15  
isolation 
positioning of metal in and on a structure relative to the lightning protection system so that the metal is 
not required to carry any part of the lightning current 

3.1.16  
log book 
record of tests and inspections of a lightning conductor installation 

3.1.17  
electronic equipment 
communications equipment, telemetry, computer, control and instrumentation systems and power 
electronic installations and similar equipment incorporating electronic components 

3.1.18  
equipment transient design level (ETDL) 
level of transients to which a piece of equipment has been satisfactorily tested  
NOTE ETDL is sometimes known as “immunity level”.

3.1.19  
transient control level (TCL) 
maximum level of transients occurring in a protected system, achieved by design of protection        
(screening etc.) or by use of surge suppressors 

3.1.20  
self-inductance 
property of a wire or circuit which causes a back e.m.f. to be generated when a changing current flows 
through it 
NOTE 1 The self-inductance of a wire or circuit produces a back e.m.f. which is given by: 

V = L ·  

NOTE 2 See C.9.2.

where

V is the back e.m.f in volts (V);

L is the self-inductance in henries (H);

 is the rate of change of current in amperes per second (A/s).

di
dt
------

di
dt
------
© BSI 7 February 2005 3
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3.1.21  
mutual inductance
property of a circuit whereby a voltage is induced in a loop by a changing current in a separate conductor 
NOTE 1 The mutual inductance of a loop produces an induced voltage given by:

V = M ·  

NOTE 2 See C.9.2.

3.1.22  
transfer inductance
property of a circuit whereby a voltage is induced in a loop by a changing current in another circuit, some 
part of which is included in the loop
NOTE 1 The transfer inductance of a loop produces an induced voltage given by:

V = MT ·  

NOTE 2 See C.9.2.

3.1.23  
lightning electromagnetic pulse (LEMP)
voltages or currents induced into cables and other conductors by the radiated field from a lightning flash 
some distance away
NOTE LEMPs may be undesirable in electronic systems, but rarely cause transients of high voltage or high energy.

3.1.24  
common mode (CM)
voltage common to all conductors of a group as measured between that group at a given location and an 
arbitrary reference (usually earth)
NOTE Common mode is sometimes known as “longitudinal mode”.

3.1.25  
differential mode (DM)
voltage at a given location between two conductors of a group
NOTE Differential mode is sometimes known as “transverse mode“.

3.1.26  
local area network (LAN)
data communications system supporting layers 1 and 2 of the ISO Reference Model for Open Systems 
Interconnections, having a geographic coverage up to 1 km end-to-end and possessing sufficient 
performance to support the aggregate data throughput required by the stations (data terminal equipment) 
being used

3.1.27  
let-through voltage
maximum peak voltage occurring within 100 4s of application of the test wave

where

V is the induced voltage in a loop in volts (V);

M is the mutual inductance in henries (H);

 is the rate of change of current in a separator conductor in amperes per second (A/s).

where

V is the induced voltage in a loop in volts (V);

MT is the transfer inductance in henries (H);

 is the rate of change of current in another circuit in amperes per second (A/s).

di
dt
------

di
dt
------

di
dt
------

di
dt
------
4 © BSI 7 February 2005
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3.1.28  
data line
cable carrying information as distinct from power 
NOTE Examples of data lines are telephone lines, telemetry control and signal lines.

3.1.29  
return stroke
part of the flash in which a charge cell in a thundercloud is discharged to earth

3.1.30  
zone of protection
volume within which a lightning conductor gives protection against a direct lightning strike by directing 
the strike to itself

3.2  
Abbreviations
The following abbreviations are used in the figures of this British Standard:

NOTE The boundary of a zone of protection is indicated in the figures by dashed lines.

4 Technical aspects of lightning

4.1 General

Lightning activity varies over the UK with more flashes in the East than in the West and more in the South 
than in the North. Furthermore, there is a variation of roughly 2:1 over a period of about 11 years, which 
corresponds with the sunspot cycle. A diagrammatic representation of the density of lightning flashes to 
ground is shown in Figure 1.

The first step in minimizing the danger from lightning is to learn as much as possible about its nature. The 
main characteristics are therefore briefly summarized in 4.2.

4.2 Characteristics of lightning

4.2.1 Current in a lightning stroke

Rather than describe an “average” lightning flash, it is easier to give ranges for the various parameters. 
The important part of a lightning flash with regard to the resulting damage is the return stroke. The 
current in this return stroke ranges from about 2 000 A to about 200 000 A and its distribution of values is 
of the form which occurs frequently in nature, the so-called log normal distribution, as follows:

DC Down conductor
GL Ground level
HC Horizontal conductor
VC Vertical conductor
ZP Zone of protection and protective angles

1% of strokes exceed 200 000 A;
10 % of strokes exceed 80 000 A;
50 % of strokes exceed 28 000 A;
90 % of strokes exceed 8 000 A;
99 % of strokes exceed 3 000 A.
© BSI 7 February 2005 5
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NOTE 1 This lightning density map was compiled by E.A. Technology Ltd. from data accumulated over 10 years.

NOTE 2 A linear interpolation should be used to determine the value of the lightning flash density, Ng, for a location between 
two contour lines.

Figure 1 — Lightning flash density to ground (Ng) per square kilometre per year for the 
British Isles
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The current in most ground flashes is from the negatively charged cells in the thundercloud and the flash 
current is therefore a negative flow from cloud to ground; less frequently, strokes from a positive part of 
the cloud also occur. For either polarity, however, the current flow is unidirectional with a rise time of less 
than 10 4s for the negative flash (but considerably longer for the positive flash) and then a decay to a low 
value, for a simple single stroke, in 100 4s or less.

Some flashes comprise two or more strokes which individually conform to the description for a single stroke 
but which may be spaced in time 50 ms to 100 ms apart. Rare multi-stroke flashes, which have more than 
10 strokes, may therefore last for up to 1 s.

For the purposes of lightning protection system design, the following values of peak lightning current (imax) 
are considered to be the most severe: 

imax = 200 kA

 = 200 kA/4s

4.2.2 Voltage

Before the flash takes place, the potential of the charge cell may be estimated very roughly by assuming 
the charge Q in the cell to be 100 C and the radius of an equivalent spherical cell to be 1 km. The 
capacitance C of the cell is therefore about 10Ö7 F and, from Q = CV, the potential V is estimated to                
be 109 V. It is reasonable therefore to assume that the cloud potential is more than 100 MV. This value is 
high enough to ensure that the potential of whatever is struck will be controlled by the product of current 
and impedance, because this will never be high enough in comparison with the cloud potential to modify 
the current magnitude.   

Although the return stroke is the most important pulse of a lightning stroke, it is necessary to know 
something of the process which precedes it in order to understand why high structures are more vulnerable 
than low ones. The lightning stroke is preceded by a downward leader which makes a step-by-step descent 
of some tens of metres at a time from the cloud. When the last step brings the tip of the leader sufficiently 
close to earth, an upward leader leaves the earth to join the tip of the downward leader, so establishing a 
conductive channel for the main current to flow.

The initiation of this upward leader depends on a critical field being exceeded at the earth emission point 
and so is a function of the charge deposited by the down-coming leader and any enhancement of the field 
caused by the geometry of the earth. The length of the upward leader will be greater for greater charges 
and hence high current flashes will start preferentially from high structures for which the field 
enhancement is high.

5 Effects of lightning strike

5.1 Electrical effects

As the current is discharged through the resistance of the earth electrode of the lightning protection 
system, it produces a resistive voltage drop which may momentarily raise the potential of the protection 
system to a high value relative to true earth. It may also produce around the earth electrode a high 
potential gradient dangerous to people and animals. In the same general manner, the inductance of the 
protection system also has to be considered because of the steep leading edge of the lightning pulse. 

The resulting voltage drop in the protection system is therefore the arithmetic sum of the resistive and 
inductive voltage components.

5.2 Side-flashing

The point of strike on the protection system may be raised to a high potential with respect to adjacent 
metal. There is therefore a risk of flashover from the protection system to any other metal on or in the 
structure. If such flashover occurs, part of the lightning current is discharged through internal 
installations, such as pipes and wiring, and therefore constitutes a risk to the occupants and the fabric of 
the structure.  

di
dt
----- 
 
© BSI 7 February 2005 7
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5.3 Thermal effects

For the purposes of lightning protection, the thermal effect of a lightning discharge is confined to the 
temperature rise of the conductor through which the current passes. Although the current is high, its 
duration is short and the thermal effect on the protection system is usually negligible. 
NOTE This ignores the fusing or welding effects on damaged conductors or those which were not adequate on initial installation.

In general, the cross-sectional area of a lightning conductor is chosen primarily to satisfy the requirements 
for mechanical strength, which means that it is large enough to keep the rise in temperature to 1 °C. For 
example, with a copper conductor of  50 mm2 cross-section, a severe stroke of 100 kA with a duration                       
of 100 4s dissipates less than 400 J per metre of conductor, resulting in a temperature rise of about 1 °C. 
The substitution of steel for copper results in a rise of less than 10 °C.  

5.4 Mechanical effects

Where a high current is discharged along parallel conductors in close proximity or along a single conductor 
with sharp bends, considerable mechanical forces are produced. Secure mechanical fittings are therefore 
essential (see Figure 2 and Table 1).   

A different mechanical effect exerted by a lightning flash is due to the sudden rise of 30 000 K in the air 
temperature and the resulting explosive expansion of the adjacent air in the channel along which the 
charge is propagated. This is because, when the conductivity of the metal is replaced by that of an arc path, 
the energy increases about one hundred-fold. A peak power of about 100 MW/m can be attained in the 
return stroke and the shock wave close to this stroke can readily dislodge tiles from a roof.

Similarly, with a side-flash inside the building, the shock wave can result in damage to the building fabric.

6 Function of a lightning conductor

A lightning conductor is incapable of discharging a thundercloud without a lightning flash. Its function is 
to divert to itself a lightning discharge, which might otherwise strike a vulnerable part of the structure to 
be protected, and to convey the current safely to earth. The range over which a lightning conductor can 
attract a lightning flash is not constant but it is now believed to be a function of the severity of the 
discharge. The range of attraction is therefore a statistical quantity.

On the other hand, the range of attraction is little affected by the configuration of the conductor, so that 
vertical and horizontal arrangements are equivalent. The use of pointed air terminations or vertical finials 
is therefore not regarded as essential, except where dictated by practical considerations.

Table 1 — Recommended fixing centres for conductors

Arrangement Fixing centres
mm

Horizontal conductors on horizontal surfaces 1 000
Horizontal conductors on vertical surfaces 500
Vertical conductors from the ground to 20 m 1 000
Vertical conductors from 20 m and thereafter 500 
NOTE 1 This table does not apply to built-in type fixings which may require special consideration.

NOTE 2 Assessment of environmental conditions should be undertaken and fixing centres different from those recommended may 
be found to be necessary.
8 © BSI 7 February 2005



BS 6651:1999
7 Materials

All materials chosen for use in the manufacture of the component parts of lightning protection systems 
should fully meet the requirements of BS EN 50164-1, where the application of the component is to clamp 
or bridge conductors. Additionally all conductors and earth electrodes should meet the requirements 
of BS EN 50164-2.
NOTE 1 The future publication of BS EN 50164-4, Fasteners will cover the requirements for all fastener/clip arrangements.

In making a choice, consideration should always be given to the risk of corrosion, including galvanic 
corrosion. General advice on this subject may be found in BS 5493 and DD 24.

For the protection of conductors, due consideration should be given to protective coatings to prevent 
corrosion in less-favourable environments, as in the following examples. 

a) Covering the conductor with lead (2 mm minimum thickness of coating) is the most suitable form of 
protection at the top of chimneys. Lead sheathing should be sealed at both ends and the sheathing should 
not be removed when making joints. 
b) Where possible, for maximum effectiveness, air terminations should be formed from bare conductors. 
Where this is not possible, for example for aesthetic reasons or because corrosion of unprotected metal 
(particularly aluminium) is expected, a thin (1 mm thick) PVC coating or paint may be used.

When non-metallic fixing materials are used, their possible degradation due to ultraviolet light, frost, etc., 
should be borne in mind and the advantages of easy installation and absence of electrogalvanic corrosion 
set alongside the possible need to replace the fixings more frequently. 

Although in the past it has been common practice to use material in the form of a strip for horizontal air 
terminations, down conductors and bonds, it may sometimes be more convenient to use rod material, 
particularly as it facilitates the introduction of bends in any plane.

Internal bonds may have approximately half the cross-sectional area of external bonds (see 16.10.2). 
Flexible bonds may be used and should then conform to the requirements of BS 6360. 
NOTE 2 Stainless steel in contact with aluminium or aluminium alloys is likely to cause additional corrosion to the latter materials 
(see PD 6484). It is therefore important to take protective measures such as the use of inhibitors.

NOTE 3 Copper alloys are permissible as long as they have a minimum copper content of 75 %  and are suitable for the environment 
and application where they will be used. (This note will be superseded with the publication of BS EN 50164-4, Fasteners.)
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NOTE 1 Lightning conductor fixings should be purpose-made for each size of strip; dimension a in Figure e) should be equal 
to the thickness of the strip and dimension b should be equal to the width plus 1.3 mm (for expansion). Conductors of circular 
section should be similarly treated. 

NOTE 2 All fixings should be securely attached to the structure; mortar joints should not be used.

Figure 2 — Typical designs for lightning conductor fixings
10 © BSI 7 February 2005
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Table 2 deleted by Amendment No. 1.

8 Dimensions
Dimensions of component parts of lightning protection systems should be in accordance with                                         
BS EN 50164-2:2002. Dimensions of sheet metal used for roofing that forms part of an air termination 
network should be in accordance with Table 5.

Table 3 deleted by Amendment No. 1.

Table 4 deleted by Amendment No. 1.

Table 5 — Minimum thicknesses of sheet metal used for roofing and forming part of the air 
termination network

9 Basic considerations

Before proceeding with the detailed design of a lightning protection system, the following essential steps 
should be taken. 

a) It should be decided whether or not the structure needs protection and, if it does, what special 
considerations, if any, should be taken into account (see Clauses 10 and 11).
b) A close liaison should be ensured between the architect, the builder, the lightning protection system 
engineer and the appropriate authorities throughout the design stages.
c) The procedures for testing, commissioning and future maintenance should be agreed. 

10 Need for protection

10.1 General

Structures with inherent explosive risks, e.g. explosives factories, stores and dumps and fuel tanks, usually 
need the highest possible class of lightning protection system and recommendations for protecting such 
structures are given in Clause 22.  

For all other structures, the standard of protection recommended in the remainder of this code of practice 
is applicable and the only question remaining is whether protection is necessary or not.

In many cases, the need for protection may be self-evident, for example:

a) where large numbers of people congregate;
b) where essential public services are concerned;
c) where the area is one in which lightning is prevalent;
d) where there are very tall or isolated structures;
e) where there are structures of historic or cultural importance;
f) where there are structures with explosive or flammable contents.

However, there are many cases for which it is not so easy to make a decision. In these cases, reference 
should be made to 10.2, 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8 where the various factors affecting the risk of 
being struck and the consequent effects of a strike are discussed. 

Material Minimum thickness
mm

Galvanized steel 0.5 
Stainless steel 0.4 
Copper 0.3 
Aluminium and zinc 0.7 
Lead 2.0 
NOTE The figures in this table are based on contemporary building practice and will be satisfactory where the roof forms part of 
the lightning protection system. However, damage by way of puncturing may occur with a direct arc-connected strike                                 
(see also A.2.4) 
© BSI 7 February 2005 11
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However, some factors cannot be assessed and these may override all other considerations. For example, a 
desire that there should be no avoidable risk to life or that the occupants of a building should always feel 
safe may decide the question in favour of protection, even though it would normally be accepted that there 
was no need. No guidance can be given in such matters but an assessment can be made taking account of 
the exposure risk (that is the risk of the structure being struck) and the following factors: 

1) the use to which the structure is put;
2) the nature of its construction;
3) the value of its contents or consequential effects;
4) the location of the structure;
5) the height of the structure (in the case of composite structures, the overall height).

10.2 Estimation of exposure risk

The probability of a structure or building being struck by lightning in any one year is the product of the 
“lightning flash density” and the “effective collection area” of the structure. The lightning flash density, Ng, 
is the number of flashes to ground per square kilometre per year. Values of Ng vary significantly; estimates 
of the average annual density calculated from observations over a period of many years are shown in  
Figure 1 and corresponding information for overseas countries can be obtained by reference to Figure 3   
and Table 6.

The effective collection area of a structure is the area of the plan of the structure extended in all directions 
to take account of its height. The edge of the effective collection area is displaced from the edge of the 
structure by an amount equal to the height of the structure at that point. Hence, for a simple rectangular 
building of length L, width W and height H (all in metres), the collection area has length (L + 2H) m and 
width (W + 2H) m with four rounded corners formed by quarter circles of radius H (in metres). This gives 
a collection area, Ac (in square metres), of: 

This is shown in Figure 29.  

The probable number of strikes to the structure per year, p, is as follows:

It should first be decided whether this risk p is acceptable or whether some measure of protection is thought 
necessary.

Table 6 — Relationship between thunderstorm days per year and lightning flashes per square 
kilometre per year

Ac = LW + 2LH + 2WH + ;H2 (1)

p = Ac × Ng × 10Ö6 (2)

Thunderstorm days per year Flashes per square kilometre per year

Mean Limits

5 0.2 0.1 to 0.5
10 0.5 0.15 to 1
20 1.1 0.3 to 3
30 1.9 0.6 to 5
40 2.8 0.8 to 8
50 3.7 1.2 to 10
60 4.7 1.8 to 12
80 6.9 3 to 17

100 9.2 4 to 20
NOTE The data for this table has been extracted from information in Conference Internationale des Grands Réseaux Electriques 
(CIGRE), Lightning Parameters for Engineering Application [1].
12 © BSI 7 February 2005
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10.3 Risks associated with everyday living

To help in viewing the risk from lightning in the context of the risks associated with everyday living,     
Table 7 gives some figures based on the UK Government Royal Commission on Environmental         
Pollution [2]. The risk of death or injury due to accidents is a condition of living and many human activities 
imply a judgement that the benefits outweigh the related risks. Table 7 allows an appreciation of the scale 
of risk associated with different activities. Generally, risks greater than 10Ö3 (1 in 1 000) per year are 
considered unacceptable. With risks of 10Ö4 (1 in 10 000) per year, it is normal for public money to be spent 
to try to eliminate the causes or mitigate the effects. Risks less than 10Ö5 (1 in 100 000) are generally 
considered acceptable, although public money may still be spent on educational campaigns designed to 
reduce those risks which are regarded as avoidable.

10.4 Suggested acceptable risk

On the basis of 10.3, the acceptable risk figure has been taken as 10Ö5 per year, i.e. 1 in 100 000 per year. 

10.5 Overall assessment of risk

Having established the value of p, the probable number of strikes to the structure per year (see 10.2), the 
next step is to apply the “weighting factors”, as given in Table 8, Table 9, Table 10, Table 11 and Table 12. 
This is done by multiplying p by the appropriate factors to determine whether the result, the overall risk 
factor, exceeds the acceptable risk of po = 10Ö5 per year.  

10.6 Weighting factors

In Table 8, Table 9, Table 10, Table 11 and Table 12, the weighting factor values are given under the 
headings A to E and denote the relative degree of importance or risk in each case.

Table 10 gives the weighting factor for contents or consequential effects. The effect of the value of the 
contents of a structure is clear; the term “consequential effects” is intended to cover not only material risks 
to goods and property but also such aspects as the disruption of essential services of all kinds, particularly 
in hospitals.   

The risk to life is generally very small but, if a building is struck, fire or panic can naturally result. All 
possible steps should therefore be taken to reduce these effects, especially among children, the old and the 
sick.

For multiple use buildings, the value of weighting factor A applicable to the most severe use should be used.
© BSI 7 February 2005 13
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NOTE This map is based on information from the World Meteorological Organization records for 1955.

Figure 3 — Map showing thunderstorm days per year throughout
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Table 7 — Comparative probability of death for an individual per year of exposure                               
(order of magnitude only)

Table 8 — Weighting factor A (use of structure)

Table 9 — Weighting factor B (type of construction)

Risk Activity

1 in 400 (2.5 × 10Ö3) Smoking (10 cigarettes per day)

1 in 2 000 (5 × 10Ö4) All accidents

1 in 8 000 (1.3 × 10Ö4) Traffic accidents

1 in 20 000 (5 × 10Ö5) Leukaemia from natural causes

1 in 30 000 (3.3 × 10Ö5) Work in industry, drowning

1 in 100 000 (1 × 10Ö5) Poisoning

1 in 500 000 (2 × 10Ö6) Natural disasters

1 in 1 000 000 (1 × 10Ö6) Rock climbing for 90 sa 
Driving 50 miles by roada

1 in 2 000 000 (5 × 10Ö7) Being struck by lightninga

NOTE The source of this table is Royal Commission on Environmental Pollution, Chairman Sir Brian Flowers, Sixth Report, 
Nuclear Power and the Environment (Cmd 6618) [2].

a These risks are conventionally expressed in this form rather than in terms of exposure for a year.

Use to which structure is put Value of factor A

Houses and other buildings of comparable size 0.3
Houses and other buildings of comparable size with an outside aerial 0.7
Factories, workshops and laboratories 1.0
Office blocks, hotels, blocks of flats and other residential buildings other than 
those below

1.2

Places of assembly, e.g. churches, halls, theatres, museums, exhibitions, 
department stores, post offices, stations, airports and stadium structures

1.3

Schools, hospitals, children’s and other homes 1.7

Type of construction Value of factor B

Steel framed encased or reinforced concrete with metal roof 0.1
Steel framed encased with any roof other than metala 0.2
Reinforced concrete with any roof other than metal 0.4 
Brick, plain concrete or masonry with any roof other than metal or thatch 1.0
Timber framed or clad with any roof other than metal or thatch 1.4
Brick, plain concrete, masonry, timber framed but with metal roofing 1.7
Any building with a thatched roof 2.0
a Structures of exposed metal which are continuous down to ground level are excluded from the table as lightning protection beyond 

adequate earthing is not needed.
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Table 10 — Weighting factor C (contents or consequential effects)

Table 11 — Weighting factor D (degree of isolation)

Table 12 — Weighting factor E (type of terrain)

10.7 Interpretation of overall risk factor

The risk factor method given in this code of practice is intended to give guidance on what can, in some cases, 
be a difficult problem. If the result obtained is considerably less than 10Ö5 (1 in 100 000), in the absence of 
other overriding considerations, protection does not appear necessary; if the result is greater than 10Ö5, for 
example 10Ö4 (1 in 10 000), sound reasons would be needed to support a decision not to provide protection.     

When it is thought that the consequential effects will be small and that the effect of a lightning strike will 
most probably be merely slight damage to the fabric of the structure, it may be economic not to incur the 
cost of protection and to accept the risk. Even if this decision has been made, it is recommended that the 
calculation is still performed in order to give some idea of the magnitude of the risk being taken.

Structures are so varied that any method of assessment may lead to anomalies and those who have to 
decide on whether protection is necessary may have to exercise their judgement. For example, a steel 
framed building may be found to have a low risk factor but, as the addition of an air termination and 
earthing system will give greatly improved protection, the cost of providing this may be considered 
worthwhile.

A low risk factor may result for chimneys made of brick or concrete. However, where chimneys are            
free-standing or where they project for more than 4.5 m above the adjoining structure, protection is 
necessary regardless of the factor. Such chimneys are, therefore, not covered by the method of assessment. 
Similarly, structures containing explosives or flammable substances are subject to additional 
considerations (see Clause 22 and 11.3).

Results of calculations for different structures are given in Table 13 and a specific case is worked through 
in 10.8.
NOTE Table 13 should be read in conjunction with Figure 4.

Contents or consequential effects Value of factor C

Ordinary domestic or office buildings, factories and workshops not containing 
valuable or specially susceptible contentsa

0.3

Industrial and agricultural buildings with specially susceptible contentsa 0.8
Power stations, gas installations, telephone exchanges, radio stations 1.0
Key industrial plants, ancient monuments and historic buildings, museums, 
art galleries or other buildings with specially valuable contents

1.3

Schools, hospitals, children’s and other homes, places of assembly 1.7
a Specially valuable plant or materials vulnerable to fire or the results of fire.

Degree of isolation Value of factor D

Structure located in a large area of structures or trees of the same or greater 
height e.g. in a large town or forest

0.4

Structure located in an area with few other structures or trees of similar 
height

1.0

Structure completely isolated or exceeding at least twice the height of 
surrounding structures or trees

2.0

Type of country Value of factor E

Flat country at any level 0.3
Hill country 1.0
Mountain country between 300 m and 900 m 1.3
Mountain country above 900 m 1.7
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10.8 Sample calculation of overall risk factor

A hospital in the Thames Valley is 10 m high and covers an area of 70 m × 12 m. The hospital is located in 
flat country and isolated from other structures. The construction is of brick and concrete with a                   
non-metallic roof. 

To determine whether or not lightning protection is needed, the overall risk factor is calculated, as follows: 

a) Number of flashes per square kilometre per year. The map in Figure 1 gives a value for Ng                     
of 0.6 flashes per square kilometre per year.

b) Collection area. Using equation (1) in 10.2, the collection area, Ac in square metres, is given by:

c) Probability of being struck. Using equation (2) in 10.2, the probable number of strikes per year, p, is 
given by:

d) Applying the weighting factors. The following weighting factors apply:

The conclusion is, therefore, that protection is necessary.  

11 Zone of protection

11.1 General

In simple terms, the “zone of protection” is the volume within which a lightning conductor gives protection 
against a direct lightning strike by directing the strike to itself.   

The size and shape of the zone varies according to the height of the building or vertical conductor. 
Generally, for structures not exceeding 20 m in height for a vertical conductor rising from ground level, the 
zone is defined as a cone with its apex at the tip of the conductor and its base on the ground; for a horizontal 
conductor, the zone is defined as the volume generated by a cone with its apex on the horizontal conductor 
moving from end-to-end. For structures exceeding 20 m in height, these zones are not necessarily 
applicable and it is recommended that additional lightning protection conductors be provided in the 
manner shown in Figure 5 (see also Clause 20) to protect against strikes on the side of the building.

Ac = LW + 2LH + 2WH + ;H2

= (70 × 12) + 2(70 × 10) + 2(12 × 10) + (; × 100)
= 840 + 1 400 + 240 + 314

= 2 794 m2.

p = Ac × Ng × 10Ö6

= 2 794 × 0.6 × 10Ö6

= 1.7 × 10Ö3 approximately.

factor A = 1.7
factor B = 1.0 
factor C = 1.7
factor D = 2.0
factor E = 0.3

The overall multiplying factor = A × B × C × D × E = 1.7
Therefore, the overall risk factor = 1.7 × 1.7 × 10Ö3 = 2.9 × 10Ö3
© BSI 7 February 2005 17
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11.2 Protective angle

For structures not exceeding 20 m in height, the angle between the side of the cone and the vertical at the 
apex of the cone is known as the protective angle, as shown in Figure 6. The magnitude of the protective 
angle cannot be precisely stated because it depends upon the severity of the stroke and the presence within 
the protective zone of conductive objects providing independent paths to earth. All that can be stated is that 
the protection afforded by a lightning conductor increases as the assumed protective angle decreases. For 
structures exceeding 20 m in height, the protective angle of any conductors up to the height of 20 m would 
be similar to that for lower structures. However, for structures above 20 m, where there is a possibility of 
such buildings being struck on the side, it is recommended that the protected volume is determined using 
the rolling sphere method (see A.5). 

For the practical purpose of providing an acceptable degree of protection for an ordinary structure up                
to 20 m high and up to a height of 20 m for a higher structure, the protective angle of any single component 
part of an air termination network, namely either one vertical or one horizontal conductor, is considered to 
be 45° [see Figure 6a) and Figure 6b)]. Between two or more vertical conductors, spaced at a distance not 
exceeding twice their height, the equivalent protective angle may, as an exception, be taken as 60° to the 
vertical; an example is shown in Figure 6c). For a flat roof, the area between parallel horizontal conductors 
is deemed to be effectively protected if the air termination network is arranged as recommended in 15.2 
and 15.3. For structures requiring a higher degree of protection, other protective angles are recommended 
(see Clause 22). 

11.3 Structures of exceptional vulnerability

For structures of exceptional vulnerability, by reason of explosive or highly flammable contents, every 
possible protection may need to be provided, even against the rare occurrence of a lightning discharge 
striking within the protected zone defined in 11.1 and 11.2. For this reason, a reduced zone of protection, 
and various other special measures should be taken as in Clause 22. 
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Table 13 — Examples of calculations for evaluating the need for protection

1 2 3 4 5 6 7 8 9 10 11 12 13

Ref

Fig

verall 
tiplying 
actor 
duct of 

umns 6    
o 10)

Overall 
risk factor 
(product 

of columns 
5 and 11)

Recommen-
dations

a) 4.6 × 10Ö5 Protection 
recommended 

b) 6.8 × 10Ö5 Protection 
recommended

c) 2.6 × 10Ö4 Protection 
required

d) 1.6 × 10Ö6 No protection 
required

e) 4.6 × 10Ö3 Protection 
required

NOT ctor (column 12). This should be 
com sks greater than 10Ö4 require 
prot
erence 
in     
ure 4

Description 
of structure

Risk of being struck, p Weighting factors O
mul

f
(pro
col

t

Collection 
area, Ac

Flash 
density, 

Ng

p =                    
Ac × Ng × 10Ö6

A
 Use of 

structure 
(Table 8)

B
 Type of 

construction 
(Table 9)

C
 Contents or 

consequential 
effects   

(Table 10)

D
 Degree of 
isolation 

(Table 11)

E
 Type of 
country 

(Table 12)

Maisonette, 
reinforced 
concrete and 
brick-built, 
non-metallic 
roof, 
Canterbury, 
Kent

3 327 0.7 2.3 × 10Ö3 1.2 0.4 0.3 0.4 0.3 0.02

Office 
building, 
reinforced 
concrete 
construction, 
non-metallic 
roof, West 
Bromwich

4 296 0.8 3.4 × 10Ö3 1.2 0.4 0.3 0.4 0.3 0.02

School,   
brick-built, in 
Kingston-on- 
Thames

1 456 0.6 8.7 × 10Ö4 1.7 1.0 1.7 0.4 0.3 0.3

Three 
bedroom 
detached 
dwelling 
house,    
brick-built, 
Bournemouth 
area

405 0.4 1.6 × 10Ö4 0.3 1.0 0.3 0.4 0.3 0.01

Village 
church in 
Lincolnshire

5 027 0.7 3.5 × 10Ö3 1.3 1.0 1.7 2.0 0.3 1.3

E The risk of being struck p (column 5) is multiplied by the product of the weighting factors (columns 6 to 10) to yield an overall risk fa
pared with the acceptable risk (10Ö5) for guidance on whether or not to protect. Risks less than 10Ö5 do not generally require protection; ri
ection; for risks between 10Ö5 and 10Ö4 protection is recommended (see 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8).  
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20 Table 13 — Examples of calculations for evaluating the need for protection (continued)

1 2 3 4 5 6 7 8 9 10 11 12 13

Reference 
in     

Figure 4

Description 
of structure

Risk of being struck, p Weighting factors Overall 
multiplying 

factor 
(product of 
columns 6    

to 10)

Overall 
risk factor 
(product 

of columns 
5 and 11)

Recommen-
dations

Collection 
area, Ac

Flash 
density, 

Ng

p =                    
Ac × Ng × 10Ö6

A
 Use of 

structure 

B
 Type of 

construction     

C
 Contents or 

consequential 

D
 Degree of 
isolation 

E
 Type of 
country 

ble 12)

1.3 4.6 × 10Ö3 Protection 
required

0.026 1.06 × 10Ö5 Need for 
protection 
marginal, 
consider other 
factors, e.g. 
future life or 
operational 
importance of 
building 

0.01 7.4 × 10Ö6 No protection 
required

0.02 4.2 × 10Ö6 No protection 
required

overall risk factor (column 12). This should be 
 protection; risks greater than 10Ö4 require 
©
 B

S
I 7 F

ebru
ary 2005

(Table 8) (Table 9) effects (Table 
10)

(Table 11) (Ta

e) Village 
church in 
Lincolnshire

5 027 0.7 3.5 × 10Ö3 1.3 1.0 1.7 2.0 0.3

f) Theatre, 
reinforced 
concrete 
construction, 
metallic roof, 
Glasgow

4 090 0.1 4.1 × 10Ö4 1.3 0.1 1.7 0.4 0.3

g) Factory, steel 
framed 
encased,   
non-metallic 
roof, 
Aberystwyth

3 675 0.2 7.4 × 10Ö4 1.2 0.2 0.3 0.4 0.3

h) Shop,      
brick-built, 
tiled roof, 
Carlisle

1 070 0.2 2.1 × 10-4 0.3 1.0 0.6 0.4 0.3

NOTE The risk of being struck p (column 5) is multiplied by the product of the weighting factors (columns 6 to 10) to yield an 
compared with the acceptable risk (10Ö5) for guidance on whether or not to protect. Risks less than 10Ö5 do not generally require
protection; for risks between 10Ö5 and 10Ö4 protection is recommended (see 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8).  
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Reference General arrangement Collection area and method of calculation

(a) Ac = 14 × 50 + 2(15 × 50)

+ 2(15 × 14) + ; × 152

Ac = 3 327 m2

(b) Ac = 15 × 40 + 2(21 × 40)

+ 2(21 × 15) + ; × 212

Ac = 4 296 m2

(c) Ac = ;3 × 142 + 2(14 × 30)

Ac = 1 456 m2

(d) Ac = 7 × 8 + 2(6 × 7) + ; × 92

+ 10 (approx.) for areas in black
Ac = 405 m2

(e) Ac = ; × 402

Ac = 5 027 m2

(f) Ac = 12 × 55 + 2(18 × 55)

+ 2(18 × 12) + ; × 182

Ac = 4 090 m2

All dimensions are in metres

NOTE This figure should be used in conjunction with Table 13.

Figure 4 — Details of structures and collection areas
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Reference General arrangement Collection area and method of calculation

(g) Ac = 25 × 60 + 25 × 30 + 6 × 60
+ 6 × 50 + 6 × 25 + 6 × 25

+ 6 × 30 + 6 × 24 +  × ; × 62

Ac = 3 675 m2

(h) Ac = 20 × 30 + 2(4 × 30)

+ 2(4 × 20) + ; × 42

+ 20 (approx.) for area in black
Ac = 1 070 m2

All dimensions are in metres

NOTE This figure should be used in conjunction with Table 13.

Figure 4 — Details of structures and collection areas (continued)

5
4
---
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NOTE This figure does not apply to reinforced concrete chimneys where the reinforcing bars can be used as down conductors 
(see 16.6).

Figure 5 — Examples of lightning protection systems for brick chimneys
© BSI 7 February 2005 23
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Plan view of zone of protection at ground level Plan view of zone of protection at ground level

(a) One vertical conductor (b) Horizontal air termination

Plan view of zone of protection at ground level

Plan view of zone 
of protection at 
ground level

(c) Four vertical conductors 
showing protective angles 
and associated zones of 
protection

Figure 6 — Protective angles and zones of protection for various forms of air termination
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12 General considerations for system design

The structure or, if it has not been built, the drawings and specifications should be examined, taking into 
account the recommendations of this code of practice.     

In the case of structures having no suitable metallic members, it is important to consider the positioning 
of all the component parts of the lightning protection system so that they perform their function without 
detracting from the appearance of the structure.

Modern buildings use metal extensively in their structure and there is considerable benefit in utilizing 
such metal parts to maximize the number of parallel conducting paths; often the lightning protection is 
improved, worthwhile cost savings may result and the aesthetic appearance of the structure preserved. 
However, it should be borne in mind that a lightning strike to such a metal part, especially if it is beneath 
the surface, may damage the covering and cause masonry to fall. This risk can be reduced, but not 
eliminated, by use of a surface-mounted lightning protection system.

Examples of metal parts which should be incorporated into lightning protection systems are steel frames, 
concrete reinforcing bars, metal in or on a roof, window cleaning rails and handrails. Some metal within a 
structure may be used as a component of the lightning protection system; for example, sheet piling, being 
in contact with the general mass of earth, may be used as an earth electrode and is unlikely to be improved 
upon by the addition of rods or tapes.

The whole structure should be provided with a fully interconnected lightning protection system, i.e. no part 
of the structure should be protected in isolation.

13 Consultation

13.1 General

Consultation should take place between the designer of the lightning protection system and the interested 
parties indicated in 13.2, 13.3, 13.4, 13.5 and 13.6 before and during all stages of design.  

13.2 Architect

As far as practicable, the following should be determined:

a) the routeing of all conductors;

b) the general areas available for earth termination networks and reference earth electrodes;

c) the material(s) for conductors;

d) the extent of the work and the division of responsibility for primary fixings to the structure, especially 
those affecting the watertightness of the fabric, chiefly roofing;

e) the material(s) to be used in the structure, especially for any continuous metal, e.g. stanchions or 
reinforcing;

f) the use to which the structure is to be put;

g) the details of all metallic service pipes, rainwater systems, rails and the like entering or leaving the 
structure or within the structure which may need to be bonded to the lightning protection system;

h) the extent of any buried services which could affect the siting of the earth termination network(s);

i) details of any equipment, apparatus, plant or the like to be installed within or near the building and 
which would need to be bonded to the lightning protection system.

13.3 Public utilities

Agreement should be reached on the bonding of services to the lightning protection system. Because of the 
introduction of new materials and practices, reliance should not be placed on agreements reached for other 
structures.  
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13.4 Fire and safety officers

Agreement should be reached on: 

a) the need for a lightning protection system on structures containing flammable or explosive materials;

b) the routes and material(s) for construction of ducts and sealing at floors if internal conductors are 
being considered;

c) the method of lightning protection to be adopted in the unlikely event of a structure having a 
flammable roof.

13.5 Television and radio installers

Agreement should be reached on the need to bond aerial supports and screens of cables to the lightning 
protection system (see Clause 26 and also BS 6330).  

13.6 Builder

Agreement should be reached on: 

a) the form, positions and numbers of primary fixings to be provided by the builder;

b) any fixings provided by the lightning protection system contractor to be installed by the builder;

c) the positions of conductors to be placed beneath the structure; 

d) whether any components of the lightning protection system are to be used during the construction 
phase, e.g. the permanent earth termination network could be used for earthing cranes, railway lines, 
scaffolding, hoists and the like during construction;

e) for steel framed structures, the numbers and positions of stanchions and the form of fixing to be made 
for the connection of earth terminations;

f) whether metallic roof coverings, where used, are suitable as part of the lightning protection system and 
the method of attachment of conductors to earth;

g) the nature and location of services entering the structure above and below ground including railway 
lines, crane rails, wire ropeways, conveyor systems, television and radio aerials and their metal supports, 
metal flues, flue-liners, window cleaning gear and dry risers;

h) the position and number of flag-masts, roof level plant rooms (e.g. lift motor rooms, ventilating, 
heating and air-conditioning plant rooms), water tanks and other salient features;

i) the construction to be employed for roofs and walls in order to determine appropriate methods of fixing 
conductors, specifically with a view to maintaining the weather-tightness of the structure;

j) possible penetration of a waterproofing membrane where earth terminations have to be sited beneath 
the structure, especially in “urban” situations and in confined spaces on industrial sites;
NOTE The same general consideration applies to the reference earth electrode for use in initial and periodic testing.

k) the provision of holes through the structure, parapets, cornices etc. to allow for the free passage of the 
down conductor;

l) the provision of bonding connections to a steel frame, reinforcement bars and other metal;

m) the most suitable choice of metal for the conductors taking account of corrosion, especially at 
bimetallic contacts;

n) the accessibility of test joints, protection by non-metallic casings from mechanical damage or pilferage, 
lowering of flag-masts or other removable objects, facilities for periodic inspection, especially on 
chimneys;

o) the preparation of a drawing incorporating the above details and showing the positions of all 
conductors and of the main components.
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14 Component parts

The principal components of a lightning protection system are as follows: 

a) air terminations;
b) down conductors;
c) joints and bonds;
d) test joints;
e) earth terminations;
f) earth electrodes.

These are dealt with in detail in Clauses 15, 16, 17 and 18 and typical designs of various fixings are shown 
in Figure 2, Figure 8 and Figure 9. 

15 Air terminations

15.1 General

Basic guidelines on the design of air terminations are given in 15.2 and explanatory notes on the various 
forms that are commonly used follow in 15.3.  

15.2 Basic rules

Air termination networks may consist of vertical or horizontal conductors or combinations of both (see, for 
example, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15).

No part of the roof should be more than 5 m from the nearest horizontal conductor (but see notes 1 and 2 
on Figure 11). For large flat roofs, this is achieved typically by use of an air termination network mesh of 
approximately 10 m × 20 m. On multiple ridge roofs, additional conductors are necessary if the separation, 
S (in metres), of the ridges is greater than 10 + 2H, where H is the height of the ridge (in metres).                   
See Figure 12.

On a reinforced concrete structure, the air termination should be connected to the reinforcing bars in the 
number of positions needed for down conductors.

All metallic projections on or above the main surface of the roof which are connected, intentionally or 
fortuitously, to the general mass of the earth should be bonded to, and form part of, the air termination 
network (see, for example, Figure 5 and Figure 7 and also refer to Figure 16).

Metallic coping, roof coverings, handrails (see Clause 12), window washing equipment and metallic screens 
around play areas should be considered for inclusion as part of the air termination network (see Figure 5, 
Figure 7 and Figure 17).

If portions of a structure vary considerably in height, any necessary air terminations or air termination 
networks for the lower portions should be joined to the down conductors of the taller portions in addition 
to being joined to their own down conductors. 
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Key

1 Handrail

2 Reinforcing bond

3 Coping bond

4 Non-ferrous bonding point (built-in)

Figure 7 — Examples of air terminations and down conductors using handrails, metal copings 
and reinforcing bars
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NOTE A corrosion inhibitor should be used on all joints and bonds.

Figure 8 — Test joints
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Figure 9 — Typical forms of vertical air terminations
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(a) Elevation showing protective angle

(b) Plan showing zone of protection at ground level

(c) General arrangement

Figure 10 — Air terminations for a flat roof
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* Join down conductors and horizontal conductors on  
lower parapet.

Section A-A

Perimeter = 24 + 24 + 12 + 12 = 72 m                                 
Number of down conductors required                                  
(see 16.3) = 72/20 = 4.

NOTE 1 An air termination along the outer perimeter of 
the roof is required and no part should be more than 5 m 
from the nearest horizontal conductor, except that an 
additional 1 m may be allowed for each metre by which the 
part to be protected is below the nearest conductor.

NOTE 2 Horizontal conductors are not necessary on the 
parapets of the light well; a zone of protection of 60° is 
provided by the two adjacent horizontal conductors for 
structures less than 20 m high. This principle does not 
apply to taller structures. 

Figure 11 — Air terminations for flat roofs at different levels
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NOTE 1 If S > 10 + 2H, additional longitudinal conductors are needed so that the distance between conductors does not             
exceed 10 m.
NOTE 2 If the length of the roof exceeds 20 m, additional transverse conductors are necessary.

NOTE 3 Down conductors are omitted for clarity.

Figure 12 — Air terminations for large areas of roof of various profiles
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Dimensions are in millimetres

For pitched roofs where cases 1) and 2) do not apply, ridge and eaves conductors are to be installed, with any intermediate 
transverse and longitudinal conductors being added to form a maximum 20 m × 10 m mesh (see 15.2) as detailed in 3), 4)      
and 5).

NOTE 1 If there are items of metalwork which are electrically continuous and are in accordance with Table 5, they may be 
utilized as part of the air termination network (e.g. metal guttering in place of the eaves conductor).

NOTE 2 These examples of air terminations for various sizes of roof, but the criteria to be met when designing the roof 
network are:

— no part of the roof should be greater than 5 m from the nearest conductor;
— a 20 m  × 10 m mesh should be maintained.

a) Air terminations and down conductors

Figure 13 — Air terminations and concealed conductors for buildings less than 20 m high with 
sloping roofs
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Key

-------- Concealed conductors

w Vertical air termination (0.3 m high bare vertical rod) or strike plate, in accordance with 15.2, 15.3.5 amd B.5

b) Air terminations below roof covering

Figure 13 — Air terminations and concealed conductors for buildings less than 20 m high with 
sloping roofs (continued)

NOTE Horizontal air termination conductors should be jointed at the interconnections in accordance with 16.10.4.

Figure 14 — Air terminations and down conductors for flat roof buildings
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NOTE The air termination network for a tall reinforced concrete or steel structure should be as follows:

a) horizontal conductors on roofs from a 10 m × 20 m network;

b) bonds to steelwork at corners, at 20 m intervals around the periphery and on the tower 0.5 m above the lower roof level;

c) key bonding to the building steelwork w.

Figure 15 — Air terminations for tall conducting structures
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* represents a bond to roof steelwork.

NOTE 1 The horizontal conductor mesh size should be 5 m × 10 m or smaller, according to the risk.

NOTE 2 Down conductors are omitted for clarity.

Figure 16 — Air termination network with horizontal conductors for a structure with 
explosive or highly flammable contents
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15.3 Forms of air termination

15.3.1 General

In practice, very few of the many forms of structure can be protected by any reasonable arrangement of 
single conductors. Recommendations for various forms of air termination are given in Figure 10, Figure 11, 
Figure 12, Figure 13, Figure 14 and Figure 15. Guidance on their application is given in 15.3.2, 15.3.3, 
15.3.4, 15.3.5 and 15.3.6. Although, for the sake of clarity, down conductors and earth terminations have 
been omitted from the figures, these should be provided as recommended elsewhere in this code of practice, 
taking account as necessary of the architectural and structural features of the structure and of the site 
conditions.  

15.3.2 Simple vertical conductor(s)

Figure 6a) shows a simple vertical conductor and the zone of protection in plan and elevation.  

Figure 6c) shows four vertical conductors with the increased angle of protection available between them. 
The zones of protection for this arrangement are shown in the plan view. However, although in suitable 
cases advantage may be taken of the increased protection zone, there can be no certainty about the precise 
shape of the envelope since this is only a statistical concept.

NOTE Minimum dimensions when a metallic roof covering is used as part of the air termination network are as 
follows:

— galvanized steel 0.5 mm;

— copper 0.3 mm;

— aluminium 0.7 mm;

— zinc 0.7 mm;

— lead 2.0 mm.

Figure 17 — Air termination for a flat roof showing connection to a standing seam joint when 
a metallic roof is used as part of the air termination network
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15.3.3 Horizontal conductor(s) for flat roofs

Figure 6b) shows a simple horizontal air termination consisting of a roof conductor around the periphery 
of a rectangular building. The resulting zone of protection is shown in plan and elevation.   

Figure 10 shows a typical arrangement for a structure with a large area of flat roof where the use of a 
system of horizontal roof conductors is strongly recommended (see 15.2). The network of the air 
termination on a flat roof is recommended to be in the form of a grid to reduce the effect of flashover caused 
by large induction loops.

15.3.4 Large structures

For buildings formed by tall block(s) with abutting lower block(s), such as that shown in Figure 15, 
protection should comprise air terminations, down conductors and earth terminations. The protection for 
the lower block(s) should be designed as though the tall block(s) and its lightning protection does not exist. 
The earth termination network and the bonding should be common (see Figure 7, 16.9, 16.10, Clause 17 
and A.1, A.2 and A.5).  

Figure 11 shows the type of building formed by a large rectangular block having a flat roof at different 
levels. The block is protected by a horizontal air termination consisting of roof conductors along the outer 
edges of the roof and also along the inner edges of any parts of the roof that are higher than adjacent parts, 
unless they fall in the zone of protection of a higher conductor, e.g. the light well. Additional roof conductors 
may be necessary for large roof areas (see note 1 to Figure 11). All elements of the lightning protection 
system should be joined together as recommended in Clause 12 (see Figure 15 and Figure 31).
NOTE Figure 15, the horizontal conductors at the base of the tower are used to connect the roof mesh to the down conductors present 
in the steelwork of the tower. They are within the zone of protection; otherwise such conductors would not be necessary. 

Figure 12 shows examples of common profiles for roofs covering large areas. Horizontal air terminations 
are shown which consist of ridge conductors bonded at both ends by conductors following the roof profiles. 
If the roof is longer than 20 m, additional transverse conductors are positioned every 20 m or part thereof.   

For structures over 20m high and of complex geometry, the rolling sphere method (see A.5 and Figure A.1) 
will determine the required locations for air terminations (unless they are inherently provided by 
structural steelwork or reinforcing).

15.3.5 Tiled roofs

On non-conducting roofs, the conductor may be placed either under or, preferably, over the tiles. Although 
mounting the conductor under the tiles has the advantages of simplicity and a reduced risk of corrosion, it 
is preferable, where adequate fixing methods are available, to install it along the top of the tiles                    
(i.e. externally). This reduces the risk of damage to the tiles should the conductor receive a direct strike and 
also simplifies inspection.  

Conductors placed below the tiles should preferably be provided with short vertical finials or strike plates 
which protrude above roof level and are spaced not more than 10 m apart. Churches and similar                   
non-conducting structures should be treated as special cases; the presence of the tower or spire should be 
disregarded when designing the protection for the lower parts of the structure (see Figure 31).

15.3.6 Simple structures with explosive hazards

Figure 18 shows the type of installation primarily intended for simple structures with explosive hazards. 
It consists of two vertical conductors connected by a horizontal catenary wire. The zone of protection is 
shown in plan and elevation and reflects the effect of the sag in the catenary wire (see 22.2.1).  
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16 Down conductors

16.1 General

The function of a down conductor is to provide a low impedance path from the air termination to the earth 
electrode so that the lightning current can be safely conducted to earth.  

This code of practice covers the use of down conductors of various types including the use of strip, rod, 
reinforcing bars and structural steel stanchions, etc. Any good conductor which forms part of the building 
structure can be included, appropriately jointed to the air and earth terminations. In general, the greater 
the number of down conductors used, the lower the risk of side- flashing and other undesirable phenomena. 
Likewise, large conductors reduce the risk of side-flashing, especially if insulated. However, the 
performance of the “shielded” coaxial down lead system is not significantly different in any respect from 
conductors of similar overall dimensions and insulation. Use of such shielded conductors does not allow a 
reduction in the number of down conductors recommended by this code of practice.

In practice, depending upon the form of the building, it is often necessary to have multiple down conductors 
in parallel, some or all of which may be part of the building structure itself. For example, a steel framed or 
reinforced concrete structure might need no added down conductors as the framework itself provides an 
efficient natural network of many paths to earth; conversely a structure made entirely from non-conducting 
materials would need down conductors deployed according to the size and form of the structure.

In brief, the down conductor system should, where practicable, be directly routed from the air termination 
to the earth termination network and be symmetrically placed around the outside walls of the structure 
starting from the corners. In all cases, consideration should be given to side-flashing. (See also 16.5.)
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a) Elevation

b) Plan Key

-– -– -– -– -– Zones of protection at 
mast

------ × ------ Zone of protection at  
maximum sag of  
aerial conductor

c) Zone of protection

NOTE 1 To prevent flashover between mast/conductor and protected building, the minimum clearance distance has to                    
be 2 m or as governed by 19.2, whichever is the greater.

NOTE 2 This clearance has to be as given in note 1, under maximum sag conditions, i.e. snow and ice on the aerial 
conductor.

Figure 18 — Air termination and zone of protection for simple structure with explosive or 
highly flammable contents
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16.2 Pattern of down conductors

Various types of structures, with and without steel frames, are shown in Figure 19.    

In high rise structures, the steel frame or reinforcement of the concrete, all of which should be 
interconnected, participate in the discharge of a lightning current together with all vertical pipes and the 
like, which should be bonded top and bottom. The design of a lightning protection system will therefore 
include continuous columns or stanchions that are spaced in accordance with 16.3. No separate down 
conductors are needed on buildings with a steel frame or of reinforced concrete construction. 

Figure 19a) represents a steel framed building. No added down conductors are therefore needed but 
earthing is essential in accordance with this code of practice. Figure 19b) shows a down conductor pattern 
where the upper floors are cantilevered on the north, east and south sides. Figure 19c) shows a pattern 
where a ballroom and/or swimming pool and terrace (for example) are situated on the south and west sides.

Figure 19d), Figure 19e), Figure 19f) and 19g) show buildings of such a shape as to permit all down 
conductors to be positioned on the outside walls. Care should be taken to avoid entrance and exit areas by 
an appropriate choice of down conductor spacing, taking account of the need to avoid dangerous voltage 
gradients along the ground surface. See also Figure 20.

16.3 Recommended number

The position and spacing of down conductors on large structures is often governed by architectural 
convenience. However, there should be one down conductor for each 20 m or part thereof of the perimeter 
at roof level or ground level, whichever is the greater. Structures over 20 m high should have one per 10 m 
or part thereof.  

16.4 Tall structures presenting inspection difficulties

For tall structures, where testing and inspection are potentially difficult, consideration should be given to 
providing a means for testing the continuity of the system. At least two down conductors will be needed for 
such tests (see Figure 5).  

16.5 Routeing

A down conductor should follow the most direct path possible between the air termination network and the 
earth termination network. Where more than one down conductor is used, the conductors should be 
arranged as evenly as practicable around the outside walls of the structure starting from the corners           
(see Figure 19) subject to architectural and practical constraints.    

In deciding the route, consideration should be given to the incorporation of structural steelwork,                      
i.e. stanchions, reinforcement and any continuous and permanent metal parts of the structure that are 
suitably disposed, into the down conductor.

The walls of light wells and enclosed courtyards may be used for fixing down conductors but lift shafts 
should not be used (see BS 5655 and 19.3.10). Enclosed courtyards should be provided with a down 
conductor every 20 m. However, there should be a minimum of two down conductors and they should be 
spaced symmetrically.

16.6 Use of reinforcement in concrete structures

16.6.1 General

Details should be decided at the design stage, before building construction begins [see 13.6l)].  
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16.6.2 Electrical continuity

The metal bars of a reinforced concrete structure cast in situ are occasionally welded, thus providing 
definite electrical continuity. More frequently they are tied together by metal binding wire at crossing 
points. However, despite the fortuitous nature of the metallic connection, the very large number of bars and 
crossing points of such a construction assures a substantial subdivision of the total lightning current into 
a multiplicity of parallel discharge paths. Experience shows that such a construction can be readily utilized 
as part of the lightning protection system. 
NOTE BS 4485-4 provides recommendations for hyperbolic and mechanical draught cooling towers of reinforced concrete 
construction.

However, the following precautions are recommended: 

a) good contact between reinforcing bars should be ensured, i.e. by fixing the bars with tying wire;

b) ties should be provided for both vertical to vertical bars and horizontal to vertical bars.

16.6.3 Electrolytic corrosion

A number of reports have been written concerning the corrosion of steel in concrete. This has a bearing 
upon the use of reinforcement in a lightning protection system with an attendant risk of accelerated 
corrosion.  

Although there has been concern about the risk of accelerated corrosion of steel in concrete, examination 
of reinforced concrete structures, including water cooling towers (see BS 4485-4), in the UK over many 
years, has revealed no problems associated with this. The continued use of steel reinforcement as part of 
lightning protection systems is therefore recommended.

It should be remembered that the reinforcement is fully encapsulated in concrete and connection to it is 
made above the ground (see Figure 7). This practice lessens the chance of ingress of water and provides a 
simple means of disconnecting the reinforcement from the system should this be necessary.
NOTE In water cooling towers (see note to 16.6.2), it is usual to rely entirely upon the reinforcement. Experience has shown that, 
although some spalling of the concrete of the coping may occur when the tower is struck, there is no significant structural damage. 

16.6.4 Pre-stressed concrete members

Lightning protection conductors should not be connected to pre-stressed concrete columns, beams or braces 
where the wires or strands are not linked and therefore not electrically continuous.  

16.6.5 Pre-cast concrete members

In the case of pre-cast reinforced concrete columns, beams or braces, the reinforcement may be used as a 
conductor if the individual elements of reinforcement are bonded together and electrical continuity is 
ensured. 
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NOTE 1 The down conductors may be natural (parts of the building framework) or added strips or rods on external faces     
(see 16.2).

NOTE 2 On structures exceeding 20 m in height, down conductors should be spaced not more than 10 m apart                             
(see Clause 20). 

Figure 19 — Patterns of down conductors (natural or not) for various forms of tall building
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Figure 20 — Voltage gradients along ground surface near to masts, towers and columns with 
single multiple earth electrodes (see 16.2 and A.1.2) 
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16.7 Internal routes

Where the provision of suitable external routes for down conductors is impractical or inadvisable                      
(see 16.8.3), down conductors may be housed in an air space provided by a non-metallic, non-combustible 
internal duct and taken straight down to ground level (see Figure 21).  

Any suitable covered recess, service duct, pipe or trunking running the full height of the building may be 
used for this purpose provided that it does not contain any cables.

16.8 Sharp bends and re-entrant loops 

16.8.1 Practical reasons do not always allow the most direct route to be followed. Whilst sharp bends, such 
as those that arise at the edge of a roof, are permissible, re-entrant loops in a conductor can produce high 
inductive voltage drops so that the lightning discharge may jump across the open side of the loop. As a 
rough guide, this risk may arise when the length of the conductor forming the loop exceeds the width of the 
open side of the loop by a multiple of eight (see Figure 22). 

16.8.2 When large re-entrant loops cannot be avoided, e.g. in the case of some cornices or parapets, the 
conductor should be arranged in such a way that the distance across the open side of a loop conforms to the 
principle given in 16.8.1. Alternatively, such cornices or parapets should be provided with holes through 
which the conductor can pass freely. 

16.8.3 In buildings with cantilevered upper floors, the risks of side-flashing from external down conductors 
to persons standing under the overhang should be considered. Down conductors should be routed 
internally, in accordance with 16.7, if the dimensions of the overhang are such that there is a risk to 
persons of side-flashing or if the spacing of the down conductors is greater than 20 m.  

The risk to persons is unacceptable if the height, h, of the overhang is less than 3 m. For overhangs equal 
to or greater than 3 m, the width, w, of the overhang should be less than or equal (in metres) to that given 
by the expression:

if down conductors are to be routed externally. The application of h and w to an overhang is illustrated in 
Figure 22d).  
NOTE The above formula has been derived from IEC 61024-1:1990, 3.2 and IEC 61024-1-2 Guide B, assuming design criteria of 
Protection Level 1, down conductor spacings of 20 m, a two-dimensional configuration of lightning protection conductors and a 
flashover medium of air between the down conductors and persons in the vicinity of the building.

16.9 Bonding to prevent side-flashing

Any metal in or forming part of the structure or any building services having metallic parts which either 
by design or fortuitously are in contact with the general mass of the earth should be either isolated from or 
bonded to the down conductor (see Clause 19). However, unless the calculations in 19.2 and the 
considerations of A.2 indicate that extra bonding is required, items already in metallic contact with the 
lightning protection system, directly or indirectly, through permanent and reliable metal-to-metal joints 
do not need additional bonding conductors. 

The same general recommendation applies to all exposed large metal items whether connected to earth or 
not.
NOTE In this context, a large item is considered as one having any single dimension greater than 2 m. 

Minor items such as door hinges, metal gutter brackets and reinforcements of small isolated beams may be 
disregarded. 

w k 15(0.9h Ö 2.5) (3)
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NOTE Attention is drawn to building regulations in respect of non-combustible ducts having seals at each floor level.

Figure 21 — Down conductor in internal duct

a) Permissible arrangement b) Arrangement that is not permissible

Figure 22 — Re-entrant loops
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16.10 Bonds

16.10.1 General

Most parts of a lightning protection system are specifically designed to fit into an overall plan. Bonds, 
however, are used to join a variety of metallic parts of different shapes and compositions and cannot 
therefore be of standard form. Because of their varied use and the risk of corrosion, careful attention needs 
to be given to the metals involved, i.e. that of the bond and of the items being bonded. In considering the 
choice of metals, guidance can be obtained from PD 6484.  

16.10.2 Mechanical and electrical requirements

A bond should be mechanically and electrically effective and protected from corrosion in, and erosion by, 
the operating environment.   

External metal on, or forming part of, a structure may have to discharge the full lightning current and its 
bond to the lightning protection system should have a cross-sectional area not less than that employed for 
the main conductors. On the other hand, internal metal is not nearly so vulnerable and its associated bonds 
are, at most, only likely to carry a proportion of the total lightning current, apart from their function of 
equalizing potentials. These latter bonds may therefore be smaller in cross-sectional area than those used 
for main conductors (see BS EN 50164-2).

16.10.3 Provision for bonding of future equipment

In all buildings, at each floor level, provision should be made for bonding future machinery or equipment 
to the lightning protection system, i.e. by connection to metallic gas, water, drainage or similar services or 
as set out in BS 7671. Structures supporting an overhead electric supply, telephone and other lines should 
not be bonded to a lightning protection system without the permission of the appropriate authority.  

c) Permissible method of taking a conductor 
through a parapet wall

d) Routes for down conductors in a building with cantilevered upper floors

Figure 22 — Re-entrant loops (continued)
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16.10.4 Joints

Any joint other than one of welded type represents a discontinuity in the current conducting system and is 
susceptible to variation and failure. Accordingly, the lightning protection system should have as few joints 
as possible.   

Joints should be mechanically and electrically effective, e.g. clamped, screwed, bolted, riveted or welded. 
With overlapping joints, the overlap should be not less than 20 mm for all types of conductor. Contact 
surfaces should first be cleaned and then inhibited from oxidation with a suitable non-corrosive compound. 
Bimetallic joints should be effectively cleaned using a separate abrasive for each type of material.

All joints should be protected against corrosion or erosion by the environment and should present an 
adequate contact area. Periodic inspection is facilitated by the use of protective coatings of:

a) petroleum-wax-based thixotropic; or

b) aerosol sprayed rubberized coatings; or

c) heat-shrunk clear sheathing.

Guidance on bimetallic joints is given in PD 6484.   

The materials used for nuts and bolts should be in accordance with BS EN 50164-1. For bolting flat strip, 
the minimum requirement is two M8 bolts or one M10 bolt. For riveted joints, at least four rivets of 5 mm 
diameter should be used.

Bolted connections of flat strip to sheet metal of less than 2 mm thickness should be shimmed for an area 
of not less than 10 cm2, and not less than two M8 bolts should be used.

16.11 Test points 

Each down conductor should be provided with a test joint in such a position that, whilst not inviting 
unauthorized interference, it is convenient for tests.   

Plates indicating the position, number and type of earth electrodes should be fitted above each test point.

17 Earth termination network
NOTE Additional information on earth termination networks is included in A.1. 

17.1 Resistance to earth

An earth electrode should be connected to each down conductor. Each of these earths should have a 
resistance (in ohms) not exceeding the product given by 10 times the number of earth electrodes to be 
provided (see 16.3). The whole of the earth termination network should have a combined resistance to earth 
not exceeding 10 7 without taking account of any bonding to other services.

The resistance to earth before and after the completion of bonding should be noted and used in all 
subsequent testing (see 17.4 and Clause 32). 

If the value obtained for the whole of the lightning protection system exceeds 10 7, a reduction can be 
achieved by extending or adding to the electrodes or by interconnecting the individual earth electrodes of 
the down conductors by a conductor installed at least 0.6 m below the ground, sometimes referred to as a 
ring earth electrode (see Figure 23). Ring earth electrodes should preferably pass below incoming services.

Buried ring earth electrodes laid in such a manner are considered to be an integral part of the earth 
termination network and should be taken into account when assessing the overall value of resistance to 
earth of the installation.

In a steel framed structure, the members of the steel frame are normally sufficiently well bonded together 
to serve as the down conductors. The lower end of the structure should be adequately earthed, with down 
conductors spaced in accordance with 16.3. In most instances, the foundations of the building will have an 
adequately low earth resistance without additional earth electrodes, particularly if the building foundation 
includes reinforced piles. A measurement of the earth resistance of the newly completed foundations will 
establish whether these are adequate alone or whether further earth electrodes should be added                       
(see A.1.6). In existing structures, the measurement of the foundation resistance to earth may be 
impractical and therefore alternative means of earthing should be sought, as discussed in Clause 18. If the 
foundation alone is to be used, provision should be made to bond each vertical member of the steel structure 
to the earth matrix of the foundation concrete reinforcing bars.  
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17.2 Importance of reducing resistance to earth

A reduction in the resistance to earth to a value below 10 7 has the advantage of reducing the potential 
gradient around the earth electrodes when discharging lightning current. It may also reduce the risk of 
side-flashing to metal in or on a structure (see 16.9).  

17.3 Common network for all services

A common earth termination network is recommended for the lightning protection system and all other 
services. It should be in accordance with the recommendations of this code of practice and should also 
comply with any regulations applicable to the services concerned. The resistance to earth should, in this 
case, be the lowest value needed for any of the individual services. 

17.4 Isolation of earth electrode systems for testing

Earth electrodes should be capable of being isolated and a reference earth electrode (see 3.1.12) should be 
provided for testing purposes.   

Where the steel structure of a building is used as the down conductors, sufficient points of test should be 
provided to enable the low resistance continuity of the steel structure to be checked. This is especially 
important for those parts of the structure that are not visible. A reference earth electrode will be necessary 
for these tests.

17.5 Structures on rock

A structure standing on rock should be provided with a ring earth electrode which follows the contour of 
the ground. If there is earth cover, it should be used. This conductor should be installed under the 
foundation of a new structure. If there are objections to these recommendations, at least two strip 
electrodes should be used, or an earth termination can usually be obtained by rock drilling and backfilling 
the hole with a conducting material such as bentonite or a conductive concrete or cement made with graded 
granular carbonaceous aggregate in place of the conventional sand or aggregate. The diameter of the hole 
should be not less than 75 mm. Coke breeze or fly ash should not be used as backfilling material because 
of their corrosive nature. The value of 10 7 for the resistance to earth is not applicable in this case.  

18 Earth electrodes
NOTE Additional information on earth electrodes is included in A.1. 

18.1 General

Before proceeding with a design, a decision on the form of earth electrode most suited to the physical nature 
of the soil as revealed by trial bore holes is necessary.   

Earth electrodes should consist of metal rods, tubes or strips or a combination of these or natural earths 
such as piles and foundations (see A.1.4 and A.1.6).

18.2 Ground conditions

18.2.1 General

Where earth rods are used, they should, except in rock (see 17.5), be driven into ground neither made up 
nor backfilled, nor which is likely to dry out (either seasonally, or due to heat from boilers or plant).  

18.2.2 Earth electrode seal for use within a tanked structure

When earth terminations in built-up areas pass through a tanked structure, a seal similar to that shown 
in Figure 24 should be used.  

18.3 Earth rods

18.3.1 Location

When earth rods are used, they should be driven into the ground beneath, or as close as practicable to, the 
structure and down conductor. The practice of siting terminations away from the building is normally 
unnecessary and uneconomical (see Figure 25). Where ground conditions are favourable for the use of rods 
in parallel, the reduction in earth resistance is small when the separation between the rods becomes less 
than their driven length.  
50 © BSI 7 February 2005



B
S

 6651:1999

©
 B

S
I 7 F

ebru
ary 2005 

51

N

tions, down conductors, 
OTE Air termination mesh should be not greater than 10 m × 20 m. Down conductors should be not more than 10 m apart. 

Figure 23 — Lightning protection system for tall buildings (over 20 m high) showing air termina
bonds to projections above roof



BS 6651:1999
18.3.2 Electrical measurements during installation

During the driving of the rods, it is advisable to take measurements of the resistance to earth. By so doing, 
an indication will be given of conditions under which it is highly unlikely that any further reduction in 
resistance will be obtained even where a greater length of rod is to be driven into the ground.  

18.3.3 Connections

The point of connection to the earth termination network should be removable and easily accessible from 
above the ground to facilitate inspection, testing and maintenance of the lightning protection system. If 
below the ground, the point of connection should preferably be housed in a purpose-built inspection pit or 
chamber. However, simpler arrangements or even none at all may be acceptable in some circumstances, 
e.g. small installations, deeper-than-normal earth termination networks, or for other reasons dictated by 
site conditions (see A.1.2).  

18.4 Strips

18.4.1 Position and form

When strips, mats or plates are used, they may be buried beneath the structure or laid in trenches at 
depths unlikely to be affected by seasonal drying out or agricultural operations. 

Strips should preferably be disposed radially from the point of connection with a down conductor and the 
numbers and lengths of strip needed should be determined such that the desired resistance to earth is 
obtained.  

If space restrictions demand the use of a parallel or grid formation of strips, the layout should be as in 
Figure 25 where the distance between parallel strips should be not less than 3 m. 

18.4.2 Corrosion

Because of the harmful corrosion which is likely to result, coke breeze should not be allowed to be in contact 
with copper electrodes, and salting of the ground in the vicinity of any earth electrode is inadvisable.  

19 Metal in or on a structure
NOTE Additional information on metal in or on a structure is included in A.2. 

19.1 General

When a lightning protection system is struck, its electrical potential with respect to earth is raised and, 
unless suitable precautions are taken, the discharge may seek alternative paths to earth by side-flashing 
to other metal in the structure.  

There are two ways of preventing side-flashing, namely:

a) isolation;

b) bonding.

Isolation requires large clearances between the lightning protection system and other metal in the 
structure. The main drawbacks to isolation lie in the difficulty in obtaining and maintaining the necessary 
safe clearances and in ensuring that isolated metal has no connection with the ground, e.g. through water 
or other services.  

In general, bonding is the more commonly used method. 

19.2 Isolation

19.2.1 Estimation of clearances to prevent side-flashing

19.2.1.1 General 

The necessary clearance to prevent side-flashing depends upon the voltage sustained by the lightning 
protection system with respect to earth, which in turn depends upon the strength of the current in the 
lightning flash. The procedure for estimating the necessary clearance is given in 19.2.1.2, 19.2.1.3              
and 19.2.1.4.
NOTE It has been shown theoretically and experimentally that the electric and magnetic fields are the same for both a “shielded” 
down conductor and a conventional system of similar size. The shielded conductor has the disadvantage that, at its top, potentials of 
up to hundreds of kilovolts can occur between the inner conductor and the outer conductor (“shield”), so triggering a side-flash. A 
further disadvantage is that the inner conductor is not accessible for inspection. 
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Figure 24 — Example of an earth electrode seal for use within a tanked structure
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Plan arrangement for single strip bisected by down conductor  Section and elevation of structure

Plan arrangement of strips in parallel (continuous heavy line) 
or grid formation (broken line) 

Plan arrangement 

(a) Strip electrodes (b) Single or multiple rod electrodes 
NOTE 1 When it is necessary for part of an earth termination network to pass near or under a road or pathway, it should be 
buried not less than 0.6 m below ground level. 

NOTE 2 The electrical potential at ground level can be reduced by burying the rod or strip deeper. 

Figure 25 — Earth terminations: arrangement of earth electrodes
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19.2.1.2 Determination of expected current

To determine the current in the lightning flash, the following steps should be taken. 

a) The risk of the structure being struck p (see 10.2) is estimated.

b) The estimated risk, po is divided by the acceptable risk, po, (see 10.3 and 10.4).

c) Using Figure 26, the maximum current likely to occur is determined.

19.2.1.3 Voltage sustained by lightning protection system

This has two components; one is the product of the current and the resistance to earth and the other is the 
product of the rate of change of current and the inductance of the down conductor. In the worst case, the 
simple addition of these two products gives the voltage which should then be used in calculations.  

19.2.1.4 Calculation of inductively generated voltages between a lightning conductor and other metalwork 
susceptible to side-flashing

Although hitherto the term “self-inductance” has been used for this calculation, in practice the induced 
voltage arises in a loop formed by the down conductor itself and the other metalwork, so strictly the 
coupling is generated by the self-inductance (L) minus the mutual inductance (M) to this metalwork. This 
quantity is termed the transfer inductance (MT) and replaces the self-inductance for this type of inductively 
generated voltage calculation. It is readily calculated using equation (4). 

a)

b)

Figure 27 — Transfer inductance in simple loop
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For a vertical lightning conductor with a circular cross-section of radius r (in metres), separated from 
another vertical metal component by a distance S (in metres), where S is the distance between the centres 
of the two conductors as shown in Figure 27a) and l is the vertical height of the loop, the transfer inductance 
MT (in microhenries) is given by the equation:

For non-circular down conductors, an effective radius (re) should be used [see Figure 27b)]. For example, 
for a strip of cross-sectional dimensions 25 mm × 3 mm, re (in metres) is given by equation (5) below: 

The calculation of MT is unaffected, however, by the cross-sectional shape of the metal pipe or other 
metalwork. Having obtained MT, the inductive voltage VL (in kilovolts) generated in the loop shown in 
Figure 27a) is given by equation (6): 

Where there are several down conductors, the distance S from the lightning conductor to the nearest down 
conductor should always be used. 

For example, using equation (6), if S = 1 m, r = 0.008 m, l = 5 m and n = 4:

From Figure 28, a spacing at the top of the loop (perhaps a side arm from the network) to the down 
conductor would have to be as small as 0.4 m locally to create a flashover danger. Such a side arm, if so 
close, should be bonded to the down conductor for safety.

In rectangular or square buildings with more than four down conductors, the corner down conductors take 
a disproportionately large share of the total current (i) (i.e. > i/n), so a factor of 30 % should be added to the 
voltage generated near such a conductor.

Conversely, in the central area of buildings having many down conductors (i.e. away from the corner down 
conductor), the value of di/dt is lower than that given by the number of down conductors by approximately 
30 % and side flashing is a relatively minor danger, assuming all services are bonded so that the earth 
resistances do not create potential differences.

19.2.1.5 Flashover voltage in relation to spacing

The flashover voltage for the given spacing should be read from Figure 28 for comparison with the 
calculated inductive voltage.

MT = 0.46 × l × log10 (4)

re = (5)

= 

= 0.008

VL =   (6)

where
is the maximum rate of change of current (in kA/4s), i.e. 200 kA/4s (see 4.2.1);

n is the number of down conductors which simultaneously share the lightning current.

VL = 200 × 

VL = 240 V

S
r
----

w t+
3.5

-------------

0.025 0.003+
3.5

------------------------------------

di
dt
----- 
 

max

MT
n

---------×

di
dt
----- 
 

max

0.46 5 log10 1 0.008⁄( )×
4

------------------------------------------------------------------
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19.2.2 Example of calculation

The following is an example of the calculation necessary to decide whether or not to bond metalwork to a 
lightning protection system.

Situation. A cast steel down pipe is positioned 2 m from the down conductor of the lightning protection 
system fitted to a block of flats 15 m high situated in a region of high lightning activity, having 1.2 flashes 
per square kilometre per year. The block of flats is 40 m × 20 m plan (see Figure 29).

Assumptions. It is assumed that the acceptable risk, po, is 10Ö5, that the resistance of the earth termination 
will be 10 7 and that the number of down conductors is six.

Problem. To decide whether or not the down pipe, which has a maximum height of 12 m, should be bonded 
to the lightning protection system.

Procedure. The plan of the collection area is as follows:

L = 40 m, W = 20 m and H = 15 m.

Collection area. Determined using equation (1): 

Probability of being struck. Determined using equation (2):

Determination of current in lightning flash.

Because p is greater than 100po, it should be assumed that the maximum lightning current of 200 kA will 
be achieved (see Figure 26).
NOTE For values of p/po less than 100, the current will be 100 log10 p/po, as shown in Figure 26.

Voltage between lightning protection system and earthed pipe at height of 12 m. Two cases are considered, 
i.e. with the metal pipe bonded and with the metal pipe not bonded to the earth termination at the ground, 
as follows.

a) Pipe bonded to earth termination. Resistive voltages can be neglected and the voltage between the 
lightning protection system and the earthed pipe equals the inductively-derived voltage (V = VL). 
Assuming six conductors (n = 6), each down conductor is of dimensions 25 mm × 3 mm (re = 0.008 m), the 
effective radius re = 0.008 m, the loop length l = 12 m and S = 2 m, if these values are applied to equations 
(4) and (6), VL is given by:

VL = 200 × 103 × 12 × 

= 440 kV

From Figure 28, a spacing of 0.85 m is needed, plus an allowance for the corner position of 30 % giving a 
total of 1.1 m. The actual spacing is 2m, therefore bonding is not needed at the top of the pipe.

Ac = LW + 2LH + 2WH + ;H2

= (40 × 20) + 2(40 × 15) + 2(20 × 15) + (; × 225)
= 800 + 1 200 + 600 + 707

Ac = 3 307 m2 (say 3 300 m2)

p = Ac × Ng × 10Ö6

= 3 300 × 1.2 × 10Ö6

p = 3.96 × 10Ö3 strikes per year

(say 4 × 10Ö3 or once in 250 years)

= 

= say 4 × 102

= 400

p
po
------ 4 10 3–×( )

10 5–
--------------------------

0.46log10 2 0.008⁄( )
6

-------------------------------------------------------
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b) Pipe contacting the ground but with no bond between the pipe and the earth termination. The total 
voltage sustained by the lightning protection system (V) is given by:

From Figure 28, a spacing of 6 m is necessary for this voltage and therefore the pipe needs to be bonded 
to the lightning protection system at the top or the bottom to eliminate the resistive voltage. The 
foregoing calculations demonstrate that side-flashing voltages are critically dependent on the number of 
down conductors and the magnitude of the earth resistance.  

Where 2 m (equal to S the separation distance) is used for assessing the flashover voltage from Figure 28, 
this implies that the closest approach of any metal connected to the pipe to any metal connected to the down 
conductor is 2 m. If, as in this case, the pipe has a 2 m separation from the down conductor but additionally 
has a side branch coming to within 1 m of the down conductor near the top, the 1 m dimension should be 
checked against Figure 28 and the lightning-produced voltage to ascertain if there is adequate clearance.

Figure 28 shows flashover voltages in air, across the face of masonry and through cracks in brickwork. 

19.3 Conditions where bonding is needed 

(see also A.2)

19.3.1 In bonding adjacent metalwork to the lightning protection system, careful consideration should 
always be given to the possible effects such bonding might have upon metalwork which has been 
cathodically protected. The recommendations of 19.3.2 to 19.3.10 should be taken into account. 

19.3.2 Where a structure contains electrically continuous metal (e.g. a roof, wall, floor, metal cladding or 
curtain walling), this metal may be used as a component of the lightning protection system provided that 
the amount and arrangement of the metal render it suitable for use, as recommended in Clauses 15, 16, 17 
and 18.

19.3.3 Where a structure is simply a continuous metal frame, no air termination or down conductor is 
necessary. It is sufficient to ensure that the conducting path is electrically and mechanically continuous 
and that the recommendations of the code of practice in respect of the connection to the general mass of the 
earth are met. 

19.3.4 A reinforced concrete structure or a reinforced concrete framed structure may have sufficiently low 
inherent resistance to earth to provide protection against lightning. If connections are brought out from the 
highest points of the reinforcement during construction, a test may be performed to verify this on 
completion of the structure (see Figure 7).   

If the resistance to earth of the steel frame of the structure or the reinforcement of a reinforced concrete 
structure is found to be satisfactory, a horizontal air termination should be installed at the top and bonded 
to the steel frame or to the reinforcement.
NOTE In the particular case of water cooling towers, it is not normal to fit an air termination, see BS 4485-4.

Where regular inspection is not possible, it is recommended that a corrosion resistant material be used for 
bonding to the steel or to the reinforcement and that this be brought out for connection to the air 
termination. Down conductors and earth terminations should, of course, be provided if the inherent 
resistance of the structure is found to be unsatisfactory when tested (see 17.1). 

V = VR + VL (7)

where
VR is the resistive voltage developed in the earth electrode system.
VL will remain the same as the value in case a) to which VR should be added as follows:

VR = × 10 × 6 [since each termination may have a resistance in ohms (7) of n × 10]

VR = 2 MV
V = 2 + 0.44

= 2.44 MV

200 103×
6

-------------------------
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Figure 28 — Curve for determination of the flashover voltage as a function of spacing
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19.3.5 Where metal exists in a structure and it cannot be bonded into a continuous conducting network and 
is not or cannot be equipped with external earthing connections, its presence should be disregarded. The 
danger resulting from the presence of such metal can be minimized by keeping this metal entirely isolated 
from the lightning protection system; due consideration should be given to the recommendations of 19.2. 

19.3.6 Where the roof structure is wholly or partly covered by metal, care should be taken that such metal 
is bonded to the lightning protection system. 

19.3.7 In any structure, metal which is attached to the outer surface or projects through a wall or roof, has 
insufficient clearance from the lightning protection system and is unsuitable for use as part of it, should 
preferably be bonded as directly as possible to the lightning protection system. If the metal runs close to an 
air termination network, e.g. water mains to storage tanks in roofs, cables, pipes, gutters, rainwater pipes 
and stairways and if the metal runs approximately parallel to a down conductor or bond, it should be 
bonded at each end but not below the test point. If the metal is in discontinuous lengths, each portion 
should be bonded to the lightning protection system; alternatively, where the clearances permit, the 
presence of the metal may be disregarded. 

19.3.8 Masses of metal in a building, such as a bell-frame in a church tower, all cladding, apparatus and 
equipment which is connected to, or in contact with, the mains water or electrical supplies and/or which is 
itself earthed should be bonded to the nearest down conductor by the most direct route available. 

19.3.9 Metal entering or leaving a structure in the form of sheathing, armouring or piping for electric, gas, 
water, rain, steam, compressed air or any other service should be bonded as directly as possible to the earth 
termination. This should be done near to the point at which the service enters or leaves the structure. Dry 
risers should be similarly treated.   

Where metal which forms part of services encroaches on the isolation distances (see 19.2), it should be 
bonded to the nearest part of the lightning protection system at the highest point of the service and at 
intervals not exceeding 20 m. 

No precise recommendations can be made because of the large variation in system designs. However, it 
should be noted that problems may arise where pipes or cables are protected with thermal or electrical 
insulation. In such cases, bonding should be made to the nearest point to where the metallic part of the pipe 
or cable becomes exposed. The bond should then be taken by as direct a route as practicable to the lightning 
earth outside the building.

This is more likely to apply in an insulated building to which the services are connected. However, where 
the building is surrounded by steelwork carrying an interconnected array of pipework, this in itself may 
well be a suitable point to which the earth connection should be made. 

With regard to electricity supplies, the advent of combined neutral earth (CNE) cables introduces problems 
because a break in the neutral could result in the load current returning by way of the earth electrode. This 
would endanger anyone breaking the earth electrode circuit to make test measurements. 

A typical system is shown in Figure 30. As a general rule, each system should be assessed on its merits and 
discussed with the authorities concerned.

Figure 29 — Plan of collection area
© BSI 7 February 2005 61



BS 6651:1999
19.3.10 In lift installations, the continuous metal structure, including the guide rails, should be bonded to 
the lightning protection system at the top and bottom of the installation.   

Where reinforcing or structural metalwork forms part of the lightning protection system, bonding to this 
metalwork is necessary.

Where it is either not possible or not practical to utilize the reinforcing or structural metalwork, or where 
no such metalwork exists, the installation should be bonded to the electrical safety earth at both the top 
and bottom of the installation. In each case, bonding should be to the earth point of the nearest distribution 
board.

20 Structures exceeding 20 m in height
NOTE Additional information on high structures is included in A.2 and A.5. 

20.1 Non-conducting structures

On non-conducting structures, at least two equally spaced down conductors should be provided and it 
should be ensured, using the rolling sphere method (see A.5), that the air termination gives the desired 
zone of protection. On chimneys, the down conductors should be bonded to the metal cap of the chimney or 
to a conductor around the top of the chimney.  

20.2 Conducting structures

The recommendations in the second paragraph of 19.3.4 are equally applicable to tall conducting 
structures but, where down conductors are needed, not less than two should be installed and these should 
be spaced not more than 10 m apart around the perimeter.  

Figure 30 — Diagram showing bonding to services (gas, water and electricity)
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20.3 All types of stayed structure

Non-conducting and conducting structures which are supported by conducting stay-wires should be dealt 
with as described in 20.1 and 20.2 but, in addition, the upper ends of the stay-wires should be bonded to 
the lightning protection system and the lower ends earthed and interconnected by a buried ring earth 
electrode.  

20.4 Church towers and spires

Lightning strikes below the highest points of tall structures are well authenticated and not less than two 
down conductors should be provided for all church towers and spires.    

For non-conducting structures, an air termination network (see Clause 15) should be designed to follow the 
construction contours of a tower; flagpoles and any other salient features above parapet level should also 
be included in the system. The remainder of the church should be protected in accordance with this code, 
with ridge, eaves and down conductors, earth termination networks and lightning protection potential 
equalization. Down conductors should not be fixed internally (see Figure 31).

Metal roofs may be suitable for use as air termination networks (see Table 5 and Figure 17).

21 Structures with roofs of high flammability

21.1 Air terminations

For structures with roofs of straw, reed, heather, grass or other highly combustible material, an air 
termination with a clearance of at least 0.3 m from the roof may be suspended from non-conducting and 
non-combustible supports or, alternatively, the air termination conductor may be laid on a hardwood strip 
at least 75 mm wide. Where wire netting is used to protect thatch and similarly-constructed roofs against 
wind and birds, it should not form part of the lightning protection system.  

21.2 Conductors and bonds

Conductors or bonds which unavoidably penetrate the roofing material should be taken through non-
conducting and non-combustible sleeves.  

22 Buildings with explosive or highly flammable contents

22.1 General

Problems arising in the provision of lightning protection systems for structures with explosive or highly 
flammable contents are preferably dealt with in consultation with specialists conversant with any relevant 
Statutory Acts or Regulations and codes of practice.    

An acceptable risk may be present when the quantity of dangerous material is strictly limited, as in a 
laboratory or small store, or where the structure is sited in an isolated position or specifically designed to 
restrict the effects of a catastrophe. Circumstances may also arise in which the dangerous materials are 
not exposed but are completely encased in metal of an adequate thickness. Under these conditions, other 
than by ensuring adequate earthing, lightning protection may not be necessary at all. In other situations, 
the risk to life and property may be such that the provision of every means possible for protection from the 
consequences of a lightning discharge is essential. Accordingly, recommendations for such cases are set out 
in 20.2 and are applicable to structures in which explosive or highly flammable solids, liquids, gases, 
vapours or dusts are manufactured, stored or used or in which highly flammable or explosive gases, 
vapours or dusts may accumulate.

In the particular case of explosives magazines and magazines at factories in the UK licensed by the Health 
and Safety Executive under the Explosives Act 1875, lightning protection systems are required by virtue 
of Orders in Council 2 and 3 made under the Act, unless such magazines are specifically exempted in the 
licence. In the case of explosive stores licensed by the local authority under the Stores for Explosives    
Order 1951, a lightning protection system is required unless the quantity of explosives in the store does not  
exceed 150 kg.
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22.2 Protective methods

22.2.1 Suspended air terminations

An air termination network should be suspended at an adequate height above the area to be protected. If 
one horizontal conductor only is used, the protective angle adopted should not exceed 30° (see Figure 18). 
If two or more parallel horizontal conductors are installed, the protective angle that is to be applied may 
be as much as 45 within the space bounded by those conductors but it should not exceed 30 outside that 
space (see Figure 32). The heights of the horizontal conductor(s) should be chosen according to the 
recommendations of 19.2 (see Figure 32); in cases of doubt, expert advice should be sought. The supports 
of the network should be adequately earthed.

Alternatively, where the expense of the preceding method would not be justified and where no risk would 
be involved in discharging the lightning current over the surface of the structure to be protected, either of 
the following arrangements would be suitable:

a) a suspended air termination as shown in Figure 32 but where protection angles are deemed to be 45° 
instead of 30° and 60° instead of 45°; 

b) a network of horizontal conductors with a mesh of 10 m × 5 m or smaller according to the risk, fixed 
to the roof of the structure (see Figure 16).

NOTE Each separate structure protected in this alternative way should be equipped with twice the number of down conductors and 
earth terminations recommended in 16.3. 

22.2.2 Vertical conductors

A structure or a group of structures of small horizontal dimensions may be protected by one or more vertical 
lightning conductors. If one lightning conductor is used, the protective angle adopted should not exceed 30°. 
If two or more lightning conductors are installed, the protective angle to be used may be 45° within the 
space bounded by the conductors, but it should not exceed 30° outside that space. Examples of this method 
of protection are shown in Figure 33. 
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Key

1 Air termination 5 Vertical conductor 9 Earth electrode

2 Down conductor 6 Ridge conductor 10 Main earthing terminal of electrical installation

3 Bonds to holding down rod 7 Eaves conductor 11 Bond to bell-frame

4 Horizontal conductor 8 Test point 12 Peripheral conductor

NOTE 1 The air termination network should have a 10 m × 20 m mesh. For structures less than 20 m high, there should be 
down conductors every 20 m of periphery and for structures over 20 m high, every 10 m of periphery; horizontal conductors 
should be every 20 m from the top.

NOTE 2 Metal roofs may be suitable as air terminations (see Table 5 and Figure 17).

NOTE 3 On shingle spires, metallic soakers and gullies should be bonded at the top and bottom. 

Figure 31 — Church towers and spires
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(a) Elevation

(b) Plan

(c) End elevation showing zones of protection
NOTE 1 Where two or more suspended horizontal conductors are employed, a protective angle of 45° may be used in the 
space bounded by the conductors. Elsewhere the protective angle is limited to 30°.
NOTE 2 To prevent flashover between the mast conductor and the protected building, the minimum clearance distance has 
to be 2 m or as governed by 19.2, whichever is the greater. The minimum clearance distance has to be maintained under 
maximum sag conditions i.e. snow and ice on the aerial conductor.

Figure 32 — Air termination with twin suspended horizontal conductors and zone of 
protection for structures with explosive or highly flammable contents
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22.2.3 Partially buried or buried structures

22.2.3.1 A structure which is partially buried or mounded should be protected in a similar manner to a 
structure standing above ground. 

22.2.3.2 A structure which is wholly below ground and which is not connected to any service above ground 
can be protected by an air termination network as in 22.2.1a), complete with its earth termination network. 
The impulse breakdown strength of the soil can be taken into account when determining the risk of 
flashover from the protection system to the structure to be protected, including its services. Where the 
depth of burying is adequate, the air termination network may be replaced by a network of earthing              
strips arranged on the surface in accordance with expert advice. Where this method is adopted, the bonding 
recommendations for metal in, or metal conductors entering the structure, should be ignored                                    
(see 22.2.4, 22.2.5 and 22.2.6).

22.2.4 Ring earth electrodes

The earth electrodes of each lightning protection system should be interconnected by a ring earth electrode. 
This ring earth electrode should preferably be buried to a depth of at least 0.6 m unless other 
considerations, such as the need for bonding other objects to it or testing, make it desirable to leave it 
exposed. The ring earth electrodes of neighbouring structures should be interconnected. 

(a) Elevation

(b) Plan

Figure 33 — Vertical air termination for protection of explosive stores
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22.2.5 Metal on or in the structure

(see also A.2) 

22.2.5.1 All major metal forming parts of the structure, including continuous metal reinforcement and 
services, should be bonded together and connected to the lightning protection system. Such connections 
should be made in at least two places (see Figure 16) and should, wherever possible, be equally spaced 
around the perimeter of the structure at intervals not exceeding 10 m.

22.2.5.2 Metalwork inside the structure should be bonded to the lightning protection system (see 16.9). 

22.2.5.3 The use of proprietary steel stores of all welded construction for explosives is now quite common. 
For such stores, adequate lightning protection is afforded by earthing the structure in at least two places.  

22.2.6 Electrical conductors entering a structure

22.2.6.1 Electrical conductors entering a structure of this category should be metal-cased. This metal 
casing should be electrically continuous within the structure; it should be earthed at the point of entry 
inside the structure on the user’s side of the service and bonded directly to the lightning protection system 
(see Figure 30). The agreement of the operating authority or owner of the cables to the proposed bonding 
arrangements should be obtained. 

22.2.6.2 Where the electrical conductors are connected to an overhead electricity supply line, a 15 m length 
of buried metal sheathed or armoured cable should be inserted between the overhead line and the point of 
entry to the structure (see Figure 34). Attention should be given to any regulations and codes of practice 
which are applicable (see also Clause 26). The precise manner in which this is done is important and should 
be discussed and agreed with the authorities concerned.  
NOTE Overhead supply lines are liable to have large surges induced in them from lightning discharges. Some form of surge 
suppression is therefore needed where the overhead supply lines join the buried cable. This will allow a large part of the lightning 
current to be discharged to earth at a safe distance from the structure.

22.2.7 Pipes, rails, etc. entering a structure

Metallic pipes, steel ropes, rails, railway tracks or guides not in continuous electrical contact with the earth 
which enter a structure of this kind should be bonded to the lightning protection system. They should be 
earthed at the point of entry outside the structure and at two further points, one about 75 m away and the 
other a further 75 m away. The earthing of rails should be carried out at the following points: 

a) the point of entry to, or exit from, the structure;

b) 75 m beyond the point of entry or exit in either direction, i.e. internally if it is an underground 
structure or externally if above ground;

c) 150 m beyond the point of entry to, or exit from, the structure in the case of above ground lines;

d) every 75 m in underground installations.

The same criteria apply to surface lines on which a travelling crane or hoist is being used (see also 19.3.9). 

22.2.8 Adit or shaft entrance to structures 

For a buried structure or underground excavation to which access is obtained by an adit or shaft, the 
recommendations in 22.2.7 for extra earthing should be followed for the adit or shaft at intervals not 
exceeding 75 m, as well as outside the structure.  

22.2.9 Fences, retaining walls, etc.

The metal uprights, components and wires of all fences and of retaining walls within 2 m of the structure 
should be connected in such a way as to provide a continuous metallic connection between them and the 
lightning protection system (see also Clause 24).  

22.2.10 Vents

In order to minimize the risk of a direct strike, the vents of any fixed tanks containing flammable gas or 
liquid, and exhaust vents or stacks from process plants emitting flammable vapours or dusts, should, if at 
all possible, be located within the zone of protection of the lightning protection system. As this cannot be 
relied upon totally to prevent ignition, vents should be protected against the propagation of flames by the 
use of flame arresters, inert gas purges or other suitable means.  
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22.2.11 Danger from tall components on or near high risk structures

High risk structures should not be equipped with tall components such as spires, flag-masts or radio aerials 
either on the structure or within 50 m of the structure. The clearance applies also to the planting of new 
trees but structures near existing trees should be treated in accordance with the recommendations of 
Clause 25.  

22.2.12 Safe testing

Testing should be carried out in accordance with the recommendations of Clause 32 and the test equipment 
should be of a type which is intrinsically safe for the particular hazard and complies with the requirements 
of BS 5501-7.    

23 Dwelling houses
The recommendations of this code of practice are applicable to dwelling houses but the provision of 
protection is unlikely to be necessary in the UK. The protection of buildings with television and radio 
aerials is further discussed in Clause 26. Where protection is provided, the recommended practice for 
dealing with metallic flue-liners is shown in Figure 35.

24 Fences

24.1 Nature of danger

If an extended metal fence is struck, the length between the point of strike and the nearest earth 
termination is raised momentarily to a high potential relative to that of the earth. People or livestock in 
close proximity to, or in contact with, such fencing at the time of a lightning discharge to the fencing may 
therefore be exposed to danger. It is desirable therefore to earth the fence via earth electrodes at intervals 
in order to discharge the lightning as effectively as possible.

Ideally, the continuity of the fence should be broken by gaps along its length filled with insulating sections 
as this helps to restrict the effect of the lightning strike to the particular section struck. However, where 
fences are primarily used for security reasons, the inclusion of insulating sections raises other problems. 
Recommendations for fences for particular purposes are included in 24.2 and 24.3.
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Figure 34 — Exceptional protection against overvoltages induced by lightning in 
incoming supplies to buildings with explosive or highly flammable contents
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Figure 35 — Lightning protection for domestic properties 
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24.2 Protection of livestock in fields

24.2.1 General

The loss of livestock due to lightning during thunderstorms is due mainly to herds congregating under trees 
in open fields or drifting against unearthed wire fences and receiving a discharge sufficient to kill them. 
The nature of the exposure of livestock in fields is such that it is not possible to eliminate the hazard 
entirely but if it is desired to minimize the hazard, the precautions in 24.2.2 and 24.2.3 should be taken.

24.2.2 Earthing

Where fences are constructed of metal uprights and continuous electrically-conducting wires, e.g. barbed 
wire, strained wires or chain link, each continuous wire should be bonded to the metal uprights at 
intervals. In cases where wooden or concrete posts are used, bonding should be to earth electrodes,                    
e.g. driven rods.  

The intervals between bonding should not exceed 150 m where the soil is permanently wet and should be 
reduced to 75 m in dry soil. 

24.2.3 Insulated gaps

The continuity of the metal fence should be broken at intervals not exceeding 300 m by wooden gates or by 
gaps not less than 600 mm wide closed by sections of non-conducting material.  
NOTE The use of chain link fencing covered with a plastics material is not recommended for such closing sections.

The earth termination of the fence at such a gap should be at least 8 m away from either side of the gap.  

24.3 Fences surrounding structures containing flammable liquids or gases

24.3.1 Earthing of all-metal fences

Where fences which surround hazardous locations are of the all-metal type, no particular problems arise 
and they can be earthed as described in 24.2.2 but at intervals not exceeding 75 m.  

24.3.2 Earthing of fences coated with plastics material

Much of the fencing in current use is of the plastics-coated close-mesh steel wire type. 

The plastics coating provides weather protection and breaking through it in order to earth the metal would 
increase the risk of corrosion and is not, therefore, recommended.

This type of fencing, however, normally carries a run of barbed wire at high level. It is recommended that 
this wire should be earthed at intervals not exceeding 75 m in order to act as an air termination for the 
protection of the fence. 

24.3.3 Insulated gaps

Because these fences are primarily for security purposes, insulated gaps may breach security requirements 
and are therefore not recommended.  

Where the security fence separates grazing land from a hazardous or high security area, a balance has to 
be struck between the attendant risks in each case.

25 Trees and structures near trees 
NOTE Additional information on trees and structures near trees is included in A.3.

The protection of trees against the effects of lightning need be considered only where the preservation of 
the tree is especially desirable because of its historical, botanical, environmental or other similar value. For 
such cases the following recommendations are made. 

a) A main down conductor should be run from the topmost part of the main stem to the earth termination 
and should be protected against mechanical damage at ground level. 
b) Large upper branches should be provided with branch conductors bonded to the main conductor.
c) Conductors so used should be stranded and sheathed. The total cross-sectional area should be not less 
than 50 mm2 for copper and aluminium. No precise sizes are given because this causes problems of 
availability. The important point is that the conductors should be flexible.
d) In the fixing of the conductors, allowance should be made for swaying in the wind and the natural 
growth of the tree.
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e) The recommendations of 16.7 need not be taken into account.
f) The earth termination should consist of two rods driven into the ground on opposite sides of, and close 
to, the trunk of the tree. A buried ring earth electrode should encircle the roots of the tree and should 
also be joined to the rods by two radial conductors. The earth termination and resistance should satisfy 
the recommendations of Clause 17.
g) Where two or more trees are so close together that their encircling ring earth electrodes would 
intercept, one ring earth electrode adequately connected to the earth rods should be buried so as to 
surround the roots of all those trees.
h) Where an isolated tree stands close to a structure, its presence can be disregarded if its height does 
not exceed that of the structure. If the tree is taller than the structure, the following clearances between 
the structure and the tallest part of the tree may be considered as safe: 

1) for normal structures, half the height of the structure;
2) for structures for explosive or highly flammable contents, the height of the structure.
If these clearances cannot be ensured, the extent of the risks involved should be considered. To reduce 
the risks to the minimum, when the tree is to remain, the structure needs to be protected in accordance 
with the recommendations of this code and the air termination or down conductor should be arranged 
so as to pass as closely as possible to the nearest part of the tree.

NOTE1 When a tree is left unprotected, a lightning current discharged into it can be conducted over distances of many tens of 
metres, along or just under the surface of the ground, in order to find a good conductor, e.g. a water or gas pipe, electricity cable or 
the lightning protection earth of a building. 

NOTE 2 Further advice can be obtained from the Arboricultural Advisory and Information Service. 

26 Structures with radio and television aerials

26.1 Indoor aerials in protected structures

Structures protected against lightning in accordance with the recommendations of this code may be 
equipped with indoor sound radio and television receiver aerials without further precautions, provided the 
clearance between the aerial system, including the down leads or feeders, and the external lightning 
protection system accords with the values given in Clause 19.  

26.2 Outdoor aerials in protected structures

Structures protected against lightning in accordance with the recommendations of this code of practice may 
be equipped with outdoor radio and television aerials without further precautions, provided that every part 
of the aerial system, including any supporting metalwork, is within the zone of protection of the lightning 
protection system. Where these conditions cannot be fulfilled, precautions should be taken to ensure that 
the lightning current can be discharged to earth without damage to the structure and its occupants as 
follows. 

a) For an aerial system fitted directly onto a protected structure, the lightning current is discharged by 
connecting the aerial bracket structure to the lightning protection system at the nearest point accessible 
below the aerial installation.

b) For an aerial system fitted on a metallic support structure which projects above the lightning 
protection system, the lightning current is discharged by connecting the aerial support structure to the 
lightning protection system at the nearest point accessible below the aerial installation. 

26.3 Aerials on unprotected structures

Before installing an aerial on an unprotected structure, the need to provide a protection system should be 
assessed as described in Clause 10.  

26.4 Use of earth electrodes of lightning protection system

It is permissible to use the earth electrode of the lightning protection system for the purpose of earthing 
the aerial system provided this does not conflict with the recommendations of BS 6330.  
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27 Miscellaneous structures

27.1 Tents and marquees

27.1.1 Large tents

Where large temporary structures of this type are used for such purposes as exhibitions and 
entertainments involving large numbers of people, consideration should be given to their protection against 
lightning. In general, such structures are manufactured from non-metallic materials and the simplest form 
of protection usually consists of one or more horizontal air terminations suspended above the structure and 
connected solidly to earth. A non-metallic extension of the vertical supports provided for such structures 
may, if convenient and practicable, be used to support a system of horizontal air terminations but a 
clearance of not less than 1.5 m should be maintained between the conductor and the fabric of the 
enclosure. Down conductors should be arranged outside the structure and be connected to earth rods which 
in turn should be connected to a ring conductor in such a manner as to be inaccessible to the general public. 
Structures which have metal frameworks should have these efficiently bonded to earth at intervals of not 
more than 20 m along the perimeter.  

27.1.2 Small tents

For small tents no specific recommendations can be given but some of the problems involved are described 
in A.4 and shown in Figure 36.

27.2 Metal scaffolding and similar structures

Where such structures are of sufficient size to warrant protection and are readily accessible to the general 
public, particularly where they are erected over and on part of the common highway or are used in the 
construction of public seating accommodation, they should be efficiently bonded to earth. A simple method 
of bonding such structures consists of running a strip of metal, other than aluminium, 20 mm × 2.5 mm in 
cross-section, underneath and in contact with the base plates carrying the vertical members of the 
scaffolding and earthing it at intervals not exceeding 20 m. With public seating accommodation, only the 
peripheral members of the structure need to be bonded to earth. Other steel structures, such as those used 
for pedestrian bridges over main trunk roads, are frequently sited in isolated situations where they may 
be prone to lightning strikes and should therefore be bonded to earth, particularly at the approach points. 

27.3 Tall metal masts, tower cranes and revolving and travelling structures

Masts and their guy wires, floodlighting towers and other similar structures of metallic construction should 
be earthed in accordance with the recommendations of this code.

Cranes and other tall lifting appliances used in building construction, in shipyards and in port installations 
should also be bonded to earth. For cranes or revolving structures mounted on rails, efficient earthing of 
the rails, preferably at more than one point, usually provides adequate lightning protection. In special 
cases, where there is concern regarding possible damage to bearings by lightning, additional measures may 
be justified and expert advice should be sought. 

27.4 Low cost buildings in areas of high lightning incidence

In some areas, particularly overseas, where lightning incidence is high but where the use of copper or 
aluminium would be economically unjustifiable or otherwise inadvisable, galvanized mild steel wire may 
be used for the protection of small farmsteads or similar structures. It should consist of a single strand, not 
less than 6 mm in diameter, erected to span the roof and ends of the structure and to continue into the 
ground at a depth of 0.6 m for a distance of 3 m (see Figure 37). Supports may be of timber, arranged to 
provide a clearance of not less than 0.9 m from the roof. Test joints are not needed, as testing after 
installation and subsequently is improbable. However, as deterioration is likely to occur first in the buried 
portions, a short separate length of a material similar to that of the lightning conductor, suitably pointed 
and galvanized overall, should be inserted in the ground beside each earth termination to permit periodic 
withdrawal, visual examination and reinsertion to serve as an indication of the condition of the 
underground conductor material. Means should be provided to prevent access to the exposed conductor and 
the ground in the immediate vicinity of the buried metal.  
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27.5 Sports stadiums

Large sports stadiums in the UK are usually occupied for only a small percentage of the time. Nevertheless, 
large numbers of people are often in attendance and some measure of protection may be considered 
necessary.

With the advent of high multi-tier stands, air terminations in the form of horizontal wires could be strung 
across the stadium from one side to the other. Bonding of all metal parts would need to be performed in 
accordance with the recommendations of this code of practice.

Another possibility would be to make use of the floodlighting towers, either as essential elements of the 
lightning protection system or as supports for horizontal wires. In either case provision would need to be 
made to protect people from danger by direct contact with the towers or against ground voltage stress 
around their bases. Direct contact with the tower could be prevented by sheathing with a protective 
insulating material from ground level to a height of about 3 m or by fencing off the tower base and 
restricting access to it.

Protection by vertical conductors Protection by horizontal conductors

General arrangement General arrangement

Zones of protection at ground level

Zones of protection at ground level

(a) Ridge tents (b) Frame tents 

Figure 36 — Lightning protection for tents
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Reduction of the ground stress to a level which would not cause harm to people would depend upon the 
average soil resistivity and the earthing arrangements. Some general comments are given in A.4.2 but it 
is often desirable to seek specialist advice (see also Figure 20 and Figure 38). 

27.6 Windmills 

27.6.1 General

The few working windmills left in the UK are of great historical and engineering interest and considerable 
effort is being spent on their preservation. Furthermore, there are many cases where non-working 
windmills are being restored. Their heritage value coupled with their often exposed position supports their 
case for protection.  

Although windmills differ widely in construction and form, the basic principles for protection are common 
to all. The recommendations given in 27.6.2 reflect this. 

Plan view

Figure 37 — Lightning protection (low cost installation) for isolated farm buildings of 
brick and tile construction
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Key

1 Metal roof, providing a natural air termination

2 Bond to steel roof and reinforcing bar of each concrete column

3 Reinforcing bars in column, providing natural down conductor

4 Bond to reinforcing bar for earthing

5 Earth electrode in concrete housing

6 Ring earth electrode interconnecting each earth electrode
NOTE All continuous or earthed metal should be connected to the ring earth electrode.

7 Lighting column (see Figure 20)

Figure 38 — Lightning protection system for sports stadium (football ground)
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27.6.2 Protection system

Figure 39 shows the basic system comprising the following. 

a) Air termination. This protects the sweeps and can take the form of a conductor along the central arms 
or around the periphery of each arm. These conductors have to be bonded to the metal shaft on which the 
sweeps are mounted. In cases where there are metal ties joining the outer ends of each sweep, these too, 
should be bonded to the conductors on each sweep.

In certain cases where the top of the windmill is large and angular, it would be prudent to protect this 
also. Experience indicates, however, that lightning usually strikes the sweeps and that protection of the 
windmill body is therefore less important. 

b) Down conductors. Two should be used, diametrically opposed in plan. 

c) Bonding. All internal and external steelwork should be bonded together. Bearings should be bypassed 
with slip rings where welding might be caused by high current density during a discharge.

27.7 Bridges

The same principles apply to a bridge as to any other structure of similar construction [see 13.6l),           
Clause 16 and Figure 40]
Reinforced concrete and steel constructions should be earthed in accordance with Clause 17.

Expansion and other gaps in electrical continuity should be bonded; metal service pipes, rails,            
handrails, signs, lighting columns and other continuous metal should be connected to the reinforcing bars 
(see 16.10.4).

It is essential with multiple bridges to ensure electrical continuity between the superposed structures. A 
lightning strike on the top bridge would cause the lightning current to flow to ground via the lower 
structures (see Clause 19).    

Prefabricated parts should be provided with lugs or plates at each end for bonding purposes.

At the foot of stairs on pedestrian bridges, insulating covering should be provided against contact and step 
voltages.

Simple calculations show that side-flashing is more likely to occur when standing under the edge of a 
bridge, rather than midway between the supporting pedestals. In this case, the following recommendations 
apply.

a) The lighting structure, railings, etc. should be bonded to the reinforcing bars. It is not then necessary 
to fit a separate, externally mounted down conductor, but if one is provided, it should be bonded to the 
reinforcing bars at the highest practical level.

b) In potentially dangerous areas where people are known to group, warning notices should be placed to 
indicate the dangers of standing near the edge with umbrellas raised.

28 Corrosion

28.1 General

Where corrosion due to atmospheric, chemical, electrolytic or other causes is likely to impair any part of 
the lightning protection system, suitable precautions should be taken to prevent its occurrence. Guidance 
may be found in DD 24, PD 6484 and BS 5493. 
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28.2 Electrolytic corrosion between dissimilar metals

The contact of dissimilar metals, unless the contact surfaces are kept completely dry and protected against 
the ingress of moisture, is likely to initiate and accelerate corrosion.

Dissimilar metal contacts can exist where a conductor is held by fixing devices or against external metal 
surfaces. Corrosion can also arise where water passing over one metal comes into contact with another 
metal. Run-off water from copper, copper alloys and lead can attack aluminium alloys and zinc. The metal 
of the lightning protection system should be compatible with the metal or metals used externally on any 
structure over which the system passes or with which it may make contact. Guidance on the choice of 
metals is given in PD 6484.

28.3 Chemical corrosion of aluminium near Portland cement, mortar mixes, etc.

For a variety of reasons, aluminium is prone to corrosion when in contact with Portland cement and mortar 
mixes. The following recommendations on installation techniques apply. 

a) Aluminium conductors should always stand off from any surfaces, particularly horizontal ones. This 
should avoid the conductors lying in water or being held in contact with corrosive materials, such as old 
mortar, etc. Suitable fixings are shown in Figure 2.

b) Conductors should not be positioned where they could become covered with debris such as leaves, etc. 
or buried by soil. This should avoid the “poultice problem” where any electrolyte tends to be held in 
continuous contact with the conductor.

c) The design of the cleating system should incorporate some form of drip-ring. This should help to 
prevent electrolyte that has run off surfaces being able to reach the conductor and run down it.

d) Where the conditions in a) to c) cannot be satisfied, the conductor should be protected as recommended 
in Clause 7 and consideration given to increasing its cross-sectional area.
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Figure 39 — Typical arrangement for protection of windmills
80 © BSI 7 February 2005



BS 6651:1999
Figure 40 — Bridges
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28.4 Chemical corrosion of copper

Although copper is highly resistant to many types of chemical attack, lead coating is recommended where 
it is subject to severe corrosion due to the presence of sulphur compounds. This is particularly the case 
where the location is inaccessible, e.g. at the tops of chimneys. The coating should be applied over the whole 
of the area that is likely to be under corrosive attack and should not be removed at joints. Insulating 
coatings which are not permanent or which are flammable are inadvisable. Fittings should be resistant to 
the corrosive agencies or be otherwise suitably protected. Joints and bonds may be protected with bitumen 
or embedded in plastic compound according to the local conditions (see also Clause 7 and 16.10.4).

Earth conductors between test points and earth electrodes should be protected against corrosion where 
they enter the ground for a distance of 0.3 m above and below ground level, PVC sleeving being a suitable 
means of protection.

29 Structures
Throughout the period of erection of a structure, all large and prominent masses of steelwork, such as steel 
frameworks, scaffolding and cranes, should be effectively connected to earth. Once work has started on the 
installation of a lightning protection system, an earth connection should be maintained at all times. 

30 Overhead power lines
During the construction of overhead power lines, overhead equipment for railway electrification, etc., the 
danger to persons can be reduced to a minimum by ensuring that an earthing system is installed and 
properly connected before any conductors other than earth wires are run out. Once the conductors are run 
out and insulation installed, they should not be left “floating” whilst they are worked on but should be 
connected to earth in the same way as they are earthed when maintenance is being carried out after the 
line is commissioned.

31 Inspection
All lightning protection systems should be visually inspected by a competent person during installation, 
after completion and after alteration or extension, in order to verify that they conform to the 
recommendations in this code. Visual inspections should be repeated at fixed intervals, preferably not 
exceeding 12 months.

In addition, the mechanical condition of all conductors, bonds, joints and earth electrodes (including 
reference electrodes) should be checked and the observations noted. If, for any reason, such as other site 
works, it is temporarily not possible to inspect certain parts of the installation, this should also be noted.

During periodic inspection of the lightning protection system, the bonding of any recently added services 
should be checked to ensure it is in accordance with the recommendations of this code.

32 Testing
On completion of the installation or of any modification to it, the following isolated and combined 
measurements and/or checks should be made and the results recorded in a lightning protection system 
logbook.

The resistance to earth of each local earth electrode and in addition the resistance to earth of the 
complete earth termination system.

Each local earth electrode should be measured in isolation with the test point between the down 
conductor and earth electrode in the disconnected position (isolated measurement).

A further measurement should be taken with the test point in the connected position (combined 
measurement). If there are any significant differences in the measurements in relation to other positions, 
the reason for such differences should be investigated. 

e) The results of a visual check of all conductors, bonds and joints or their measured electrical continuity. 
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The recommended method of testing is given in BS 7430.

If the resistance to earth of a lightning protection system exceeds 10 7, the value should be reduced, except 
for structures on rock as described in 17.5. If the resistance is less than 10 7 but significantly higher than 
the previous reading, the cause should be investigated and any necessary remedial action taken.

Tests should be repeated at fixed intervals, preferably not exceeding 12 months. 
NOTE 1 It may be advantageous to choose a period slightly shorter than 12 months in order to vary the season in which tests are 
made. 

NOTE 2 It is emphasized that before disconnecting a lightning protection earth, it should be tested to ensure that it is not “live”, 
using a sensitive voltage testing device. 

33 Records

The following records should be kept on site or by the person responsible for the upkeep of the installation: 

a) scale drawings showing the nature, dimensions, materials and position of all component parts of the 
lightning protection system;
b) the nature of the soil and any special earthing arrangements;
c) the type and position of the earth electrodes, including reference electrodes;
d) the test conditions and results obtained (see Clause 32);
e) any alterations, additions or repairs to the system;
f) the name of the person responsible for the installation or its upkeep.

A label should be attached at the origin of the electrical installation, worded as follows: 

“This structure is provided with a lightning protection system that is in accordance with BS 6651 and 
the bonding to other services and the main equipotential bonding should be maintained accordingly.”

34 Maintenance and upkeep

The periodic inspections and tests recommended in Clauses 31 and 32 will show what maintenance, if any, 
is needed. Particular attention should be given to the following: 

a) earthing; 
b) evidence of corrosion or conditions likely to lead to corrosion;
c) alterations and additions to the structure which may affect the lightning protection system                    
(e.g. changes in the use of a building, the installation of crane tracks or erection of radio and television 
aerials).
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Annex A (informative)
Explanatory notes on some of the recommendations of this code

A.1 Earth termination network earth electrodes 

[Clauses 17 and 19] 

A.1.1 General

Comprehensive information on the subject of earthing is to be found in BS 7430. 

A.1.2 Effect of side-flashing and potential difference close to the earth electrode 

The risk of side-flashing within the structure to be protected and the risk of a dangerous potential gradient 
occurring in the ground adjacent to the earth terminations depend on the earth resistance. The risk of 
side-flashing in some types of structure also depends on other factors in addition to the resistance of the 
earth termination, as described in 5.2. The potential gradient around the earth termination is a function 
of the soil resistivity. In Figure 20, a lightning strike is assumed to have occurred to the lightning 
protection system of a structure. As the lightning current is discharged through the earth electrode, the 
surrounding soil is raised for the duration of the discharge to a potential with respect to the body of the 
earth. The resulting potential gradient and the way in which this gradient can be reduced by adding ring 
earth electrodes to lower the earth resistance are shown in Figure 20. 

A potential difference may be lethal to a person if it exceeds a few thousand volts and to an animal if it 
exceeds a few hundred volts. As this potential difference is a function of the product of the lightning current 
and the resistance of the earth electrode, the importance of keeping the latter as low as possible, 
particularly in areas where people or animals are likely to be present, is evident. For practical purposes, a 
maximum value of 10 7 is recommended for each earth electrode system where there is danger to people 
or animals, but any reduction below this would be advantageous. 

An alternative method of reducing the potential gradient at the ground surface in the vicinity of earth 
electrodes is to bury each earth electrode so that its top is at least 1 m deep, and to insulate the connection 
from the down conductor to the earth termination network with material having a minimum breakdown 
strength of 500 kV e.g. polyethylene 5 mm thick. 

The danger to persons within a structure is effectively reduced by the presence of any floor, other than one 
of earth or rock. 

A.1.3 Use of service pipes as terminations 

With the growing use of insulated sections inserted between the main service pipes and the feeds entering 
structures, reliance cannot be placed on the use of these insulated service pipes as either primary or 
secondary earthing terminations. 

Service pipes should be bonded to the lightning protection system inside the structure such that all 
connections can be inspected easily. 
NOTE Incoming gas pipes should not be used as earthing electrodes (see Figure 30). 

A.1.4 Earth termination networks 

Examples of the dimensions of earth electrodes in soil of resistivity 100 7·m at 10 °C which will generally 
produce a resistance to earth of approximately 10 7 for an earth termination network are as follows: 

a) a ring earth electrode in the form of a closed loop not less than 20 m in length installed at least 0.6 m 
below ground; or 

b) vertical rods or tubes, individually not less than 1.5 m in length and totalling not less than 9 m in 
length for the whole earth termination network; or 

c) radial conductors totalling not less than 20 m in length installed at least 0.6 m below ground                             
(see 18.3.1); or 

d) reinforced concrete (see A.1.6). 

BS 7430 should be consulted for all details. 

Deeply driven electrodes are used where, for example, clay lies beneath gravel. Reliance should not be 
placed on standing water levels. The water, especially in gravel, may be pure and will not necessarily 
provide a low resistance value for the electrode entering into it. 
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No appreciable reduction in resistance is achieved by increasing the diameter or surface area of the driven 
electrode. Larger sizes become more difficult to drive and are more expensive in materials. For example, 
for electrodes of 1.2 m in length, the relation between diameter and mass is given in Table A.1. 

Table A.1 — Relationship between diameter and mass of electrodes

Table A.1 shows that the mass of a rod 1.2 m in length with a diameter of 25 mm is four times that of a rod 
of 1.2 m in length with a diameter of 13 mm. 

For the same mass of material and in the same kind of soil, one electrode rod 4.8 m in length with a 
diameter of 13 mm, or four electrodes spaced 1.2 m apart, each 1.2 m in length with diameters of 13 mm, 
provides a resistance value of about one-third that of one electrode rod 1.2 m in length with a diameter         
of 25 mm. 

A.1.5 Special cases

Special considerations apply at earth terminations for the following: 

a) fences containing metal (see 24.3.1);

b) trees (see Clause 25);

c) farm buildings (see 27.4); 

d) structures on bare rock (see 17.5). 

If a structure on bare rock is protected as recommended in 17.5 and any metal in or on the structure is 
bonded to the lightning protection system as recommended in 19.3, adequate protection should be provided 
for people inside the structure. However, people leaving or entering such a structure whilst an overhead 
thunderstorm is in progress are exposed to the risk arising from the high potential drop likely to occur 
outside during a discharge to the structure. 

If surface soil or a rock vein of high conductivity is available within 30 m to 50 m of the structure, an 
earthing electrode as described in Clause 18 should be provided and this should be connected to the ring 
conductor. The risk to a person when leaving or entering the structure is thus reduced, although not 
completely eliminated.

A.1.6 Reinforced concrete foundations used as earth termination network

When reinforced concrete foundations are used as the earth termination network, the following formula 
may be used to make an approximate calculation of the earth resistance that may be expected: 

Soil resistivity may be determined using the method given in BS 7430. 

Electrode diameter
mm

Approximate mass
kg

13 1.4
16 2.3 
19 3.2
25 5.4

R = (A.1)

where
R is the resistance in ohms (7); 
Ô is the soil resistivity in ohm metres (7·m); 
V is the volume of concrete in cubic metres (m3). 

Ô

; 1.57 V3××
-------------------------------------
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Examples of the application of the formula are as follows. 

a) 5 m3 of reinforced concrete in ground having a soil resistivity of 100 7·m has an earth resistance of 
approximately 10 7; 

b) multiple column foundations of reinforced concrete in ground having a soil resistivity of 100 7·m have 
the following approximate earth resistances:

1) 0.2 m3 (equivalent to a hemispherical electrode of 0.9 m diameter) has a resistance of         
approximately 30 7, e.g. three column foundations of 0.2 m3 would have an overall earth resistance of 
approximately 10 7;

2) 0.6 m3 (equivalent to a hemispherical electrode of 1.4 m diameter) has a resistance of 20 7, e.g. two 
column foundations of 0.6 m3 would have an overall earth resistance of approximately 10 7.

For the use of piles as earth electrodes, see BS 7430. 

A.2 Metal in or on a structure and structures exceeding 20 m in height

[Clauses 19 and 20] 

A.2.1 Bonding of extended runs of metal whether connected to earth or not 

Any extended metal in or on the structure, not connected to the lightning protection system but in 
conducting connection with earth, e.g. water pipes, gas pipes, metal sheaths, electrical installations, etc. 
remains essentially at earth potential during a lightning discharge. Even if an extended metal part is not 
in contact with earth, a potential difference between it and the lightning protection system is liable to arise 
although the magnitude of this potential difference will be smaller than if the metal were earthed. If the 
resulting short-time potential difference between any part of the lightning protection system and any 
adjacent metal exceeds the electric breakdown strength of the intervening space, be this air, a wall or any 
other structural material, a side-flash can occur. This can cause physical damage, ignite flammable 
material or cause electric shocks to people or animals. 

A.2.2 Bonding external runs of metal at each end

Such bonding has to be effected at both extremities of any extended metal. The metal may then form part 
of the discharge path but any risk of physical damage or injury is avoided. 

A.2.3 Deciding which metal needs bonding

Difficulties are liable to arise in deciding which metal parts need to be bonded and which can be 
disregarded in this context. No such difficulties should arise with long continuous installations such as 
metallic service pipes, ducts, lifts, staircases or long ladders. These can usually be bonded to the lightning 
protection system without excessive inconvenience or cost. On the other hand, the presence of short isolated 
pieces of metal such as window frames, which are merely in fortuitous connection with the ground through 
the rain-covered surface of the structure, can be disregarded. 

A structure having reinforcement steelwork or cladding forming a continuous close metal mesh in the form 
of internal reinforcement or screen approaches the condition in which any internal unbonded metal 
assumes the same potential as the structure itself. On such a structure, the risk of side-flashing is greatly 
reduced and the recommendations for bonding can be substantially relaxed. 

A.2.4 Dangers of thin metal coverings

If any part of the outer surface of the structure is covered with a thin metal skin, this metal may, by 
accident or design, form part of the path of the lightning current as it goes to earth. The current may leave 
the metal, either because the metallic path is not continuous or because its cross-sectional area is 
inadequate to carry the current without melting. In either case, an arc will be formed which will entail some 
risk of fire if easily ignitable materials are present. The recommended clearances to avoid the risk of       
side-flashing are given in 19.2.1. 

A.2.5 Inductance of down conductors in relation to height of structure

As the height of a structure increases, the resistive voltage drop in the earth termination network assumes 
progressively less importance compared with the inductive voltage drop which occurs only along the down 
conductors. 
86 © BSI 7 February 2005



BS 6651:1999
A.3 Trees and structures near trees

[Clause 25] 

Clause 25 gives the circumstances in which it may be advisable to provide protection for trees. 

The recommended earth termination network is designed to protect the roots of the tree and to reduce the 
potential gradient in the event of a lightning discharge to the tree to a safe value within the area bounded 
by the outer buried strip conductors. 

The practice of sheltering under trees during a thunderstorm is dangerous and should be discouraged 
wherever possible. 

When a tree is struck by lightning, a potential gradient develops along its branches, trunk and roots and 
this may cause a side-flash to an adjacent structure as described in A.2. 

The flashover strength of a tree can be taken as 250 kV/m as compared with the breakdown strength of air 
of 500 V/m. These figures form the basis of the recommendation in 25 h) for the minimum safe clearance 
between a tree and a structure. 

If the actual clearance is found to be too small to prevent the occurrence of a side-flash to the structure, the 
structure should be fitted with lightning protection such that the energy in the side-flash is discharged 
through the protection system without damage to the structure. 

If a tree near a structure is itself fitted with a lightning protection system, the structure may thus be 
adequately protected. No further lightning protection for the structure is then necessary, provided the 
conditions recommended in this code of practice with respect to the zone of protection and separation are 
followed. 

A.4 Miscellaneous structures

[Clause 27] 

A.4.1 Small tents

For small tents, conformity to the recommendations in 27.1.1 would be expensive. However, in areas of 
severe thunderstorm activity and in mountainous regions, campers using small tents are strongly advised 
to adopt certain precautions. These are as follows (see Figure 36). 

a) Protection for small tents can be achieved by the use of one or two telescopic metal poles outside the 
tent which should be arranged so that the tent lies within the protective angle recommended in 11.2. The 
foot of each of these metal poles should be connected to an earth spike placed in a direction away from 
the tent and, wherever possible, driven into a moist piece of ground. In addition, a bare metal wire should 
be laid on the ground around the tent and connected to the foot of each metal pole. 

b) In the case of metal-framed tents, the metal, if continuous, will act as the lightning conductor. The 
frame should be connected to two earthing spikes driven as described in a) in opposite directions away 
from the tent. 

c) In a thunderstorm it is essential, particularly in unprotected tents, to avoid the risk of potential 
difference across the body. This may be accomplished by lying on a metal-framed cot. If this is not 
possible, the risk can be reduced by sitting on the ground with the knees drawn up to the chest and by 
avoiding physical contact with the tent and with other occupants. 

A.4.2 Sports stadiums

When a tall lighting column is struck by lightning, the current flows into the ground from the base of the 
column and a good approximation to the ground stress can be obtained from an assumption that the 
equipotentials in the ground are hemispherical shells. Hence, with a median current of 30 kA and an 
average soil resistivity of 103 7·m, the ground stress will be about 50 kV/m at a distance of 10 m from the 
column, and will vary with the inverse of the square of the distance (see Figure 20 and Figure 38). 

On the assumption that, for humans, the voltage gradient should not exceed 10 kV/m, a distance of 22 m 
from the column base would be needed in order to reach this level. 

Use of a suitable earth electrode in the form of a circular mesh 10 m in diameter could significantly reduce 
the ground voltage stress in the vicinity of the tower. Additional protection against ground voltage stress 
could also be obtained by providing an insulated mat of four-ply 1 000 gauge PVC sheets just below the final 
asphalt layer. 
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For protection against direct contact with the tower itself, a 5 mm coating of epoxy resin sprayed onto the 
structure from ground level to a height of at least 3 m is recommended. 

Care should be taken in the choice of material used in order to keep its degradation by sunlight to a 
minimum. 

A.5 Structures with complex geometry

[Clause 15.3.4] 

The "rolling sphere" method, described in this clause, may be used to identify non-protected parts of tall, 
complex structures. This method is based on the mechanism of the lightning leader process of attachment 
to buildings. 

A lightning flash is preceded by the step-by-step descent of a downward leader which deposits charge along 
its route and along the routes of its many branches. As the charged leader progresses, an increasing charge 
of opposite sign is induced on the earth's surface and the consequential electric field between the two 
charges intensifies until the field at the earth is high enough for an upward leader to be launched to meet 
the downward leader and so complete the path for the return stroke. 

Lightning therefore terminates on the ground (or on structures) at the place from which the upward 
connecting leader was launched and, because such leaders are launched at points of greatest electric field 
intensity and are not constrained to go vertically upwards, they can travel in any direction towards the 
approaching leader. As an example of this, lightning is known to strike the sides of tall buildings, which 
should not occur if the 45° cone of protection is applied for all structures. 

The positions of greatest field intensity on the ground and on structures are, in general, those nearest to 
the end of the leader before the last jump. For the purpose of this method, at this instant, points equidistant 
from the end of the leaders are equally likely to receive a lightning strike, whereas points further away are 
less likely. Therefore, the surface of a sphere centred on the position of the leader before the last step 
describes positions to which the leader could jump (see Figure A.1). Since the lightning leader can approach 
from any position, all possible positions for the leader approach can be simulated by rolling an imaginary 
sphere, of a radius equal to the last step length, all around and over the building right down to the ground. 
Where it touches the building a strike could occur and such a portion or surface may need an air 
termination as described in Clause 15. However, if that portion of the building is free from sharp 
projections, existing closely spaced air terminations or down conductors may be adequate; examples are a 
flat roof as in Figure 11 or a cylindrical tower as in Figure 5. If there are sharp projections, consideration 
should be given to the addition of further air terminations. 

Simple-shaped tall buildings can be protected as described in Figure 23 but for complex buildings the 
rolling sphere should be applied. The method is equally applicable to buildings with air terminations on 
them or ones with suspended catenaries. The method can be used to determine the protected volume of any 
particular design of lightning protection system. 

In general, the smaller the size of the sphere, the greater the protection but the more costly the installation. 
Sizes from 20 m to 60 m have been recommended in other countries but, for the purpose of this code, it is 
recommended that calculations should normally be based on a sphere of radius 60 m. However, a sphere of 
radius 20 m should be used for buildings with explosive or highly flammable contents or which contain 
sensitive electronic equipment (see C.8.2). 
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Figure A.1 — Examples of use of the "rolling sphere method" for assessing a tall complex 
building for regions where air terminations are needed
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Annex B (informative)
Guidance on the application of BS 6651

NOTE This annex contains a collation of enquiries received by the Technical Committee responsible for BS 6651 and the replies that 
were given. It is emphasized that the information provided in this annex does not alter the technical content of the standard but 
provides guidance on its application. 

B.1 "Zone of protection" and "rolling sphere" methods of lightning protection 

Enquiry 

Will the committee please advise whether comparable results can be obtained with the "zone of protection" 
and the "rolling sphere" methods of designing a lightning protection system? 

Reply 

The committee considers that the technical basis of the two methods is quite different and comparable 
results should not necessarily be expected. The technical factors involved in the design of the lightning 
protection systems are more fully taken into account by the "rolling sphere" method but there has been 
much satisfactory practical experience with the simple "zone of protection" method which is easier to apply. 

B.2 Damage to metal cladding caused by direct arc-connected strike

[Note to Table 5] 

Enquiry 

Will the committee please advise what mechanical damage can occur to metal cladding applied to 
structures as a result of a lightning strike and can the effects be calculated? 

Reply 

The committee considers that it is possible for puncture of the metal cladding to occur but this is normally 
avoided by using a sheet thickness of at least 2 mm. 

Although mathematical formulae exist to determine the forces between the lightning conductor and other 
current-carrying conductors, these are very complex and it would be difficult to determine the distribution 
of current in the cladding and supporting structure. Adequate fixing to provide mechanical stability under 
conditions likely to be encountered in service should be sufficient to withstand the forces during a lightning 
strike. 

B.3 Tall brick-built chimneys

[Figure 5] 

Enquiry 

Will the committee please advise whether the change in the radius of the rolling sphere from 20 m to 60 m 
alters the recommendations for the spacing of ring conductors for brick-built chimneys above 20 m in 
height? 

Reply 

The committee considers that the recommendations are unaltered. Ring conductors need to have 20 m 
spacing in order to assist in dispersing the lightning current. 

B.4 Lightning protection for flat roofs

[Clause 15.2 and Figure 10] 

Enquiry 

Will the committee please advise why a mesh is recommended for the air termination on a flat roof when 
protection is afforded by parallel conductors 10 m apart? 

Reply 

The committee considers that a mesh ensures that the lightning current at the point of strike is quickly 
dispersed throughout the air terminations to all down conductors thus reducing mechanical and thermal 
stress and minimizing the risk of side-flashing. 
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B.5 Air terminations and tiled roofs

[Clause 15.3.5] 

Enquiry 

Will the committee please advise the conditions under which air terminations may be installed below tiled 
roofs? 

Reply 

The committee considers that air terminations should be installed over the tiles of tiled roofs for maximum 
effectiveness of the lightning protection system. However, if architectural considerations outweigh the 
need for maximum protection, air terminations may be installed below the tiles but as close to them as 
possible. This will result in an indeterminate reduction in overall effectiveness which is considered to be 
not very significant other than for the possibility of localized damage to the tiles in the event of a lightning 
strike. 

If architectural considerations permit, the effectiveness of an installation beneath the tiles can be improved 
and the risk of damage to tiles reduced by the addition of short vertical finials spaced not more than 10 m 
apart, which are connected to the air termination and emerge through the ridge and eaves tiles. As an 
alternative, where short vertical finials are unacceptable, exposed metal plates may be used. 

It is normally only practicable to install air terminations under tiles during construction or re-construction 
of the roof. 

Because of the diversity of the architectural details of tiled roofs, it is not possible to provide details of any 
particular methods of installation of such air terminations and it is recommended that the actual method 
employed be the subject of agreement between the lightning protection installer and the architect or 
builder. The method used should not impair the roof's resistance to penetration of water and should provide 
suitable means for installing ridge conductors, interconnecting conductors from the ridge to eaves 
conductors, the eaves conductors and any necessary bonding conductors. 

Any metal components in the structure, such as metal gutters, may be incorporated into the system in place 
of the conductors referred to above. 

Although the installation of air terminations below tiles may result in some damage to the tiles in the event 
of a lightning strike to the air termination, the protection afforded to the remainder of the structure is 
expected to be normal. 

B.6 Design of a lightning protection system for a structure having different side elevation 
heights effectively above and below 20 m 

[Clause 16.3] 

Enquiry 

Where a structure is built on a sloping site and the effective height of one side of the structure is less       
than 20 m whilst the other side is in excess of 20 m, will the committee please advise whether each 
elevation of the structure should be judged on its individual height or should a judgement be made on the 
whole of the structure? 

Reply 

The committee considers that the criteria for the design of the lightning protection system should be 
applied to each individual elevation. 

B.7 Use of reinforcement in concrete structures 

[Clauses 16.6 and A.1.6] 

Enquiry 

Will the committee please advise whether a reinforced concrete pile can be used as a down conductor and, 
without any additional electrode, as an earth termination? 
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Reply 

The committee considers that provided the recommendations in 16.6.2 are followed, the use of reinforced 
concrete piles as down conductors and earth terminations is acceptable. The bonding of down conductors 
recommended by BS 6651 can be regarded as satisfying also the recommendations in 12.2 and 12.3 of 
BS 7430:1998 to which A.1.6 refers. In a lightning protection system, there is, of course, no continuous 
current flow and 5.3 indicates the limited thermal effects of a lightning discharge. 

B.8 Lightning protection system for a reinforced concrete chimney

[Clause 16.6 and Figure 5] 

Enquiry 

Will the committee please advise whether for reinforced concrete chimneys, the provision of separate down 
conductors, and for chimneys over 20 m high, horizontal conductors are necessary? 

Reply 

The committee considers that the note below Figure 5, read in conjunction with 16.6, indicates that it is 
not essential for reinforced concrete chimneys to be provided with down conductors or for chimneys                   
over 20 m high in applicable cases to be provided with horizontal conductors. The provision of additional 
protection is unlikely to be detrimental but its cost and maintenance need to be seriously considered as any 
gain in the level of protection is likely to be marginal. 

B.9 Down conductors in internal ducts

[Clause 16.7] 

Enquiry 

Will the committee please advise whether a wall cavity can be used as an internal duct where an external 
route is not available? Would the recommended fixing centres in Table 1 then apply? 

Reply 

The committee considers that in principle a wall cavity conforming to 16.7 can be considered as an internal 
duct. However, it will then need to be recognized that the desirable access to the interior of the duct is 
unlikely to be available, that bridging of the cavity is a possibility, the corrosion of the down conductors 
could present a serious problem (see Clause 28), that bonding to the lightning protection system will be 
made more difficult, and that access to the test joint should preferably be provided from outside of the 
building. 

The recommendations for conductor fixing centres in Table 1 apply also when the conductor is in an 
internal duct. 

B10 Recommendations for lift installations

[Clauses 16.10.2 and 19.3.10] 

Enquiry 

Will the committee please advise how bonding of lift shaft steelwork to the lightning protection system is 
to be achieved in view of the waterproofing of the tanking in lift shaft pits? 

Reply 

The committee recommends bonding to minimize voltage differences between lift shaft steelwork and the 
lightning protection system and considers that this can be effected by: 

a) passing the bonding conductor through the lift pit tanking by means of a seal of the type shown                             
in Figure 24; or 
b) bonding to the building steelwork which itself is bonded to the lightning protection system provided 
that the joints in the steelwork are of negligible impedance; or 
c) making the bonding connection above the level of the tanked lift pit and thence to the lightning 
protection system or other steelwork which is itself bonded to the lightning protection system. 
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B.11 Earthing of steel framed buildings

[Clause 17.1] 

Enquiry 

Where a steel framed building is used as the down conductor, will the committee please advise whether it 
is possible to use the foundations as an earth with electrodes installed and connected to steel columns and 
whether the number of electrodes is determined as if conventional down conductors were being installed? 

Where a steel framed building is connected to reinforced piles which are used as the earthing system, the 
standard recommends that each vertical column is connected to the pile below. Will the committee please 
advise whether it is possible to connect to the number of piles that correspond with the number of earth 
electrodes? 

Reply 

The committee considers that the purpose of 17.1 is to achieve a low resistance between the lower end of 
the steel frame and earth. The reinforced piles at the outside of the building are normally the most effective 
for earthing purposes due to the better ground conditions. Whether one or more of the piles is to be 
connected to each column of the steel frame will depend on the recommendations for resistance to earth. 

B.12 Bonding of external metal clad structures 

[Clauses 19.3.2 and A.2.3] 

Enquiry 

Many modern structures have external cladding usually in the form of large infill panels which are 
insulated by rubber seals from the support frame which itself is interconnected and electrically continuous. 
Will the committee please advise whether it is sufficient to bond the main and support framework or do 
each of the individual panels need to be bonded also? 

Reply 

The committee considers that it is always advisable to ensure that external metal panels are bonded. 
Generally because of the nature of the construction and fixing of these panels it is considered that a 
continuous path to earth exists (see 17.1). However where the integrity of the conducting path is 
questionable supplementary bonding should always be provided. 

B.13 Bonding of the lightning conductor to the main earthing terminal

[Clause 19.3.9 and Figure 30] 

Enquiry 

Will the committee please advise whether there is any safety hazard in bonding the lightning conductor to 
the main earthing terminal of the protected installations as shown in Figure 30? 

Reply 

The committee considers that bonding of the main earthing terminal to the lightning conductor should not 
increase the danger to an electrical installation within the protected structure but should actually reduce 
the danger to the structure and its contents, including persons, during the discharge of a direct lightning 
strike to the protected structure. 

A lightning protection system conforming to BS 6651 should have down conductors spaced at 20 m 
intervals around the perimeter of the protected structure and electrical main intakes will generally be 
within 15 m of a down conductor. The bonding conductor should be sized as an installation earthing 
conductor associated with the main electrical supply but need not be greater than the down conductor to 
which it is connected (see 16.10.2). 
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B.14 Bonding of the lightning conductor to service pipes 

[Clause 19.3.9 and Figure 30] 

Enquiry 

Will the committee please advise whether there is any safety hazard in bonding the lightning conductor to 
all other service pipes, especially the gas service pipe, as shown in Figure 30? 

Reply 

The committee points out that bonding of the lightning conductor to the gas service pipe, as shown in 
Figure 30, is a requirement of BS 7671. The fitting of an insulator, as illustrated in Figure 30, is to isolate 
the cathodic protection on the gas service pipe. The insulator is not considered to be vulnerable to 
breakdown if the building structure is struck by lightning. However, if there is any reason to doubt its 
integrity then a surge diverter should be placed across the flange. 

B.15 Utilizing steelwork beneath combustible roofing materials as an air termination

[Clause 15.2] 

Enquiry 

Will the committee please advise whether on flat roofs it is possible to use the steelwork beneath 
combustible roofing materials as an air termination? Such roofing materials could consist of roofing felt, 
insulating board and/or thermal insulation (polystyrene etc.). 

Reply 

The committee considers that the existence of combustible materials between the steelwork and the roof 
surface constitutes a fire risk in the event of a lightning strike to the steelwork. Therefore, it is 
recommended that an independent air termination network mesh is installed above the roof in accordance 
with 15.2 and that the mesh conductors are positioned, where practicable, vertically above the steelwork 
members. The mesh and steelwork should be bonded at roof level and ground level. 

Annex C (informative)
General advice on protection against lightning of electronic equipment within 
or on structures

NOTE It is emphasized that this annex is included for information only, and that compliance with Annex C is not necessary for 
compliance with BS 6651 as a whole unless invoked in a contract. 

C.1 General 

This annex gives general advice on the assessment of the risk of damage to or maloperation of electronic 
equipment within or on structures due to lightning, and on the design of systems for the protection against 
lightning of such equipment. Throughout the annex the term "electronic equipment" has the meaning given 
in 3.1.17. The implementation of the advice given may also provide some level of protection against 
transients from other origins (e.g. switching transients). 

A conventional lightning protection system is designed and installed only to protect the fabric of a 
structure. However, with the increasing reliance of industry and commerce on sensitive electronic 
equipment, there is now a need to give an insight into the problems and advice on methods of protecting 
such equipment and associated data (software, etc.) from the effects of a lightning strike. 

The complexities of the phenomena of lightning striking buildings, the lightning current flow through 
buildings and the coupling mechanisms giving rise to transients which cause damage to equipment and 
corruption of data are outlined. The risk of occurrence of transient disturbances from lightning is covered 
in C.4 but there are many factors which can dictate the need for such protection, for example the need to: 

a) minimize fire risks and electric shock hazards; 
b) prevent extended stoppages in industry and commerce with the inherent financial implications; 
c) prevent health and safety hazards resulting from plant instability after loss of control; 
d) safeguard essential services such as fire alarms, communications and building management systems; 
e) prevent costly repair programmes to computer and instrumentation systems. 
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The advice given in this annex is of a general nature and its application to a specific protection system 
should take into account the particular conditions pertaining to that system. In cases of difficulty, specialist 
advice should be sought. 

It is emphasized that even where protection is provided it can never be completely effective in eliminating 
the risk of damage to equipment or corruption of data. 

Figure C.1 illustrates how lightning current may enter industrial plant and associated control systems 
following a lightning strike to buildings, control rooms or the surrounding ground. 

C.2 Application of this annex 

When applying the advice in this annex, the following procedure should be adopted. 

a) Decide whether there is a need to protect the structure against lightning (see Clause 10). 
b) If the answer to a) is yes, consider the design specification that is needed to protect the structure, and 
then proceed to c). If the answer to a) is no, then proceed directly to c). 
c) Decide whether there is a need to protect the electrical and electronic installations within or on the 
structure against lightning. (See C.4 and C.5) 
d) If the answer to c) is yes, then consult C.3, C.7 and C.13. If the answer is no, then no further action is 
required. 

NOTE 1 Useful background information relating to various aspects of lightning protection is given in C.8 and C.9. 

NOTE 2 Sample calculations are given in C.6, C.10, C.11 and C.12.

Figure C.1 — Strike location points to industrial installations which could affect electronic 
systems
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C.3 Basic considerations of electronic system lightning protection 

C.3.1 Exposure levels

Before dealing with detailed design for protection of electronic equipment, the basic protection provided by 
the building should be considered. The information given in C.4 and C.5 assists in making the decision as 
to whether protection of electronic equipment is required.

C.3.2 Protection provided by the building 

When considering the protection of electronic equipment in a building and the need for such protection, it 
is necessary to take into account whether or not the structure of that building is already, or will be, 
equipped with a lightning protection system in accordance with the recommendations of this code of 
practice. Furthermore, the risk analysis (in C.4) of the need to provide protection for electronic equipment 
will often give a different result from that obtained by the risk analysis in Clause 10. However, it is worth 
bearing in mind that many of the aspects of the protection of building structures and electronic equipment 
in buildings may already be necessary for some other reason, such as earthing and bonding to comply     
with BS 7671. 

The type of structure which affords ideal lightning protection is a building with metal cladding on all walls 
and the roof providing a "screened room" environment for the electronic equipment. If all the cladding and 
roofing is satisfactorily bonded together, it enables the lightning current from a strike anywhere on the 
structure to flow as a "sheet of current" all over the surface and down to the earth terminations. Many steel 
framed or reinforced concrete buildings with metal cladding approximate to this ideal and attention need 
only be paid to the prevention of transients brought in on the supply mains or other services.                                     
(See Figure C.2). 

Hence care should be taken to obtain a low impedance bond to the lightning earth termination system from 
the metal armouring of the mains feeders, gas, water and other services. The method of power supply entry 
as shown in Figure 30 is recommended, with surge suppressors being provided if so indicated by the risk 
assessment. With such "screened room" buildings, electronic installations totally within the building are 
very well protected. 

Where buildings are constructed from reinforced concrete or are steel framed with no metal cladding, 
lightning currents can flow in internal stanchions and advice is given in C.7.2 regarding precautions for 
computer location and wiring layout.

If the construction materials of a building are substantially free of metal, it may be necessary to treat the 
building as a "high risk" structure (see Clause 22) and give enhanced conventional building lightning 
protection. (See C.7.1). 

In general, surge suppression devices should be fitted as close to the point of entry/exit to the structure as 
practical. 
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Figure C.2 — Configurations involving electronic equipment

Figure C.3 — Lightning current distribution in a fifteen stanchion building
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NOTE 1 Transfer inductance (MT) contours are as follows:

1) 0.015 4H/m 2) 0.02 4H/m 3) 0.03 4H/m

4) 0.04 4H/m 5) 0.05 4H/m 6) 0.07 4H/m

7) 0.0 4H/m

NOTE 2 The internal stanchions (A, B and C) carry only 3.1 %, 2.3 % and 3.1 % respectively of the total lightning current.

NOTE 3 The mutual inductance to a loop in vertical plane is obtained by subtracting the value of transfer inductance at the 
position of one vertical leg from the value at the other position (ignoring any resultant negative signs). The transfer inductance 
to a wire on the stanchion is zero.

Example:

For the 2 m high loop shown in the figure and a rate of rise of lightning current of  of 50 kA/4s:

Mutual inductance (M) = (0.03 – 0.015)

= 0.015 4H/m

Therefore voltage
= M (height) · 

= (0.015 × 10–6) × (2.0) × (5 × 1010)

= 1 500 V

Figure C.4 — Plan view of fifteen stanchion building showing resulting field line plot  
(transfer inductance contours) for lightning pulse

di
dt
------

di
dt
------
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C.3.3 Current routes in buildings 

Current flow in a "screened room" building has been referred to in C.3.2 where it was noted that current 
principally flows as a "sheet of current" distributed all over the surfaces of roof and walls and down to the 
earth termination. Minor resistance variations in different parts of the surface have little effect because 
current flow paths are determined by inductance and not by resistance, owing to the fast impulsive nature 
of the lightning return stroke and restrikes. 

A similar tendency for current to flow on external conductors occurs in steel framed or reinforced concrete 
structures, having the configurations shown in Figure C.3 and Figure C.4 where the example of current 
confined to 15 discrete paths is given. It should be noted that the internal stanchions labelled A, B and C 
in Figure C.4 carry a very small percentage of the current and so give minimal magnetic fields inside. Thus 
the lightning protection afforded to electronic equipment within a building is considerably improved by 
having many down conductors, preferably around the periphery of the building. The more down conductors 
that are available to carry current on the periphery, the weaker the magnetic fields inside and the less the 
likelihood of transient interference into electronic equipment. It can thus be seen that a single down 
conductor installed in a building is unacceptable from both the lightning transient injection and side-
flashing aspects. 

C.3.4 Effect on the magnitude of lightning transients with different system configurations 

The ideal type of arrangement for buildings and electronic systems within them which minimizes the risk 
of lightning discharge currents causing damage or upset to the systems, is shown in Figure C.2a).  

In such circumstances, measures are taken to protect against lightning-induced, transient voltages in the 
mains power supplies to the buildings. This is the arrangement described in C.3.2 where the building 
structures are well protected against lightning. 

Electronic systems in non-metallic buildings without external lightning protection are most at risk and 
careful consideration of the method of protection of such buildings and their contents is needed. An 
explanation of some of the risks is given in the following paragraphs of this subclause and guidance on 
protection against them is given in C.7.1 and C.7.2. 

An example of a type of situation where there can be considerable risk is a building which contains 
electronic equipment and which may have associated equipment such as radio or radar aerials, 
meteorological apparatus or, in the case of a process plant, sensors mounted externally. This associated 
equipment may be mounted on the sides or top of an adjacent mast, radio tower, process vessel or 
conventional building as illustrated in Figure C.2b). The roof or mast equipment is outside the protected 
environment of the building with its lightning protection system, but cables leading from the equipment 
into the protected building can introduce severe transient voltages into the electronic equipment in the 
building if the roof or mast equipment is struck by lightning, no matter how good the lightning protection 
on the building. Furthermore, parts of the equipment mounted on the roof or mast may be susceptible to 
damage caused by a direct lightning strike or, at the very least, by the very large induced voltages or 
currents from lightning discharges flowing in and around sensors and their wiring. 

The foregoing example shows that the possibility of transient voltages being introduced into electronic 
equipment in buildings depends not only on the lightning protection of the building itself but the 
installation details of the wiring and sensors on the tower and the route to the electronic equipment in the 
building. Guidance on measures to protect against these risks is given in C.7. 

A further example of a common problem that can give rise to severe transient voltages is shown                                
in Figure C.2c). There is a tendency for lightning discharge currents to follow the conducting paths formed 
by cables which interconnect buildings, so that the current may flow from a building that has been struck 
into a building which has not itself been struck. Currents of tens of kiloamps may flow in such links and 
protection against this phenomenon is essential. Suitable protection is described in C.7. Problems arising 
from current flow in data lines between separate buildings constitute one of the major risk categories. 

C.4 Risk assessment 

C.4.1 Decision to install lightning protection

The decision whether to provide protection for electrical and electronic installations against the secondary 
effects of lightning depends on: 

a) the probable number of lightning strikes to the area of influence (see C.4.2); 

b) the vulnerability of the system configuration (see C.4.3). 
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C.4.2 The probable number of lightning strikes 

C.4.2.1 Effective collection area 

The probable number of lightning strikes to the effective collection area in any one year is given by the 
product of "lightning flash density" and the effective collection area. 

The effective collection area, Ae in square metres (m2) is given by: 

Ae = area of structure + collection area of surrounding ground + collection area of adjacent associated 
structures + effective collection area of incoming mains services + effective collection area of data line 
leaving the earth reference of the building 

C.4.2.2 Area of the structure 

This area is the plan area of the structure. 

C.4.2.3 Collection area of the surrounding ground 

A lightning strike to ground or a structure causes a localized increase in ground potential. Any cables,       
e.g. mains or data lines, entering the area of raised ground potential will be subject to a common mode 
transient overvoltage. The effect of a ground strike will diminish as the distance between the perimeter of 
the structure and the strike point increases. There will be a certain distance beyond which a strike will 
have negligible effect. This is the collection distance D, in metres. For a typical 100 7·m resistivity soil, the 
distance D should be taken to be 100 m. For soil with other values of resistivity, the distance D should be 
taken to be numerically equal to the soil resistivity value up to a maximum value of 500 m for a soil 
resistivity of 500 7·m or greater. 

The collection area of surrounding ground is the area between the perimeter of a structure and a line 
defined by the distance D away from it. Where the height of the structure, h exceeds D, the collection 
distance is assumed to be h. 

C.4.2.4 Collection area of adjacent associated structures

The collection area of adjacent associated structures which have direct or indirect electrical connections to 
the electrical or electronic equipment in the structure being considered, should be taken into account. 

Typical examples are external lightning towers supplied from the main building's electrical installation, 
other buildings with computer terminals, control and instrumentation equipment etc. and transmission 
towers. 

At a site where several buildings are conductively-connected and are spaced at a distance less than 2D, the 
collection area of the adjacent associated structure(s) is the area between the perimeter of the associated 
structure and a line defined by a distance D away from it. Any part of this area within the collection area 
of the structure being considered is disregarded. (See example 1 in C.6). 

C.4.2.5 Effective collection area of incoming mains services 

The effective collection areas associated with various types of mains services are shown in Table C.1. 

All incoming and outgoing cables (e.g. to other buildings, lighting towers, remote equipment etc.) are 
considered separately and the collection areas summated. 

Table C.1 — Effective collection area of mains services

Type of mains service Effective collection area 
m2

Low voltage overhead cable 10 × D × L 
High voltage overhead cable (to on-site transformer) 4 × D × L 
Low voltage underground cable 2 × D × L 
High voltage underground cable (to on-site 
transformer) 

0.1 × D × L 

NOTE 1 D is the collection distance in metres (see C.4.2.3). The use of h in place of D, as explained in C.4.2.3, does not apply.

NOTE 2 L is the length in metres of power cable with a maximum value of 1 000 m. Where the value of L is unknown, a value                   
of 1 000 m should be used.
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C.4.2.6 Effective collection area of data lines leaving the earth reference of the building 

The collection areas associated with various types of data line cables are shown in Table C.2. 

If there is more than one data line cable, they should be considered separately and the collection areas 
summated. In the case of multicore cables, the cable is considered as a single cable and not as individual 
circuits. 
NOTE A self-powered electronic circuit housed within an electrically continuous, metal-clad building and which has data lines that 
are free of conducting material will not be at risk from lightning. However, a data line containing conductors (not using a fibre optic 
cable) or a low voltage supply line, connected to the same electronic circuit could dramatically increase the risk of lightning damage. 

Table C.2 — Effective collection area of data lines

C.4.2.7 Assessment of the probability of a strike

The probable number of strikes to the defined collection area per year, p, is as follows: 

p = Ae × Ng × 10–6

C.4.3  Vulnerability of the system configuration 

The overall risk of a strike to electrical or electronic equipment will depend upon the probability of a     
strike (p) and each of the following items: 

a) type of structure; 

b) degree of isolation; 

c) type of terrain. 

In Table C.3, Table C.4  and Table C.5, weighting factors F to H are assigned to each of the items to indicate 
the relative degree of risk in each case. 

Table C.3 — Weighting factor F (type of construction)

Type of data line Effective collection area 
m2

Overhead signal line 10 × D × L 
Underground signal line 2 × D × L 
Fibre optic cable without a conductive metallic shield or core 0
NOTE 1 D is the collection distance in metres (see C.4.2.3). The use of h in place of D, as explained in C.4.2.3, does not apply.

NOTE 2 L is the length in metres of the data line with a maximum value of 1 000 m. Where the value of L is unknown, a value      
of 1 000 m should be used.

where 
Ae is the total effective collection area in square metres (m2); 
Ng is the flash density per square kilometre per year. 

Type of structure Value of F 

Building with lightning protection and equipotential bonding in 
accordance with BS 6651. 

1

Buildings with lightning protection and equipotential bonding in 
accordance with CP 326. 

1.2

Building where equipotential bonding for electrical or electronic 
equipment reference may be difficult (e.g. buildings over 100 m long.)

2.0
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Table C.4 — Weighting factor G (degree of isolation)

Table C.5 — Weighting factor H (degree of terrain)

C.4.4 Risk of a lightning strike to a particular system configuration 

The risk of a lightning strike and the vulnerability of the system configuration (weighting factors) can be 
combined to assess the risk of a lightning strike coupling into electrical or electronic systems through either 
the incoming/outgoing mains service or incoming/outgoing data lines. 

The risk of occurrence (R) of a lightning-induced transient overvoltage is given by: 

NOTE The value of 1/R indicates, in years, the average period between lightning-induced overvoltages. It is emphasized that such 
average values are based on data collected over many years. 

C.5 Decision to provide protection

The decision to provide protection should take into account the consequential effects of damage to 
important electrical and electronic equipment. Consideration should be given to health and safety hazards 
due to loss of plant control or essential services. The cost of computer system downtime or plant downtime 
should be compared with the cost of protection and prevention. A classification of structures and contents 
is given in Table C.6. 

Table C.6 — Classification of structures and contents

For a particular installation of electronic equipment, the value of R is ascertained (see C.4.4) and the 
consequential loss rating is established from Table C.6. By using the values in Table C.7, it is possible to 
determine the exposure level to which the surge protection devices should be designed. (See C.13). Where 
the exposure level is negligible, protection is not normally necessary. 

 Degree of isolation Value of G 

Structure located in a large area of structures or trees of the same or 
greater height, e.g. in a large town or forest. 

0.4

Structure located in an area with few other structures or trees of similar 
height. 

1.0

Structure completely isolated or exceeding at least twice the height of 
surrounding structures or trees. 

2.0

NOTE Table C.4 has the same weighting factors as Table 11 but is repeated here to assist the user.

 Type of terrain Value of H 

Flat country at any level 0.3
Hill country 1.0
Mountain country between 300 m and 900 m 1.3
Mountain country above 900 m 1.7
NOTE Table C.5 has the same weighting factors as Table 12but is repeated here to assist the user.

R = F × G × H × p (C.1)

 Structure usage and consequential effects of damage to contents Consequential loss rating 

Domestic dwellings and structures with electronic equipment of low 
value and having a small cost penalty due to loss of operation. 

1

Commercial or industrial buildings with essential computer data 
processing where equipment damage and downtime could cause 
significant disruption. 

2

Commercial or industrial applications where loss of data or computer 
process control could have severe financial costs. 

3

Highly critical processes where loss of plant control or computer 
operation may lead to severe environmental or human cost (e.g. nuclear 
plant, chemical works etc.). 

4
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Table C.7 — Classification of exposure level

C.6 Sample calculations

Example 1 

A commercial company's computing headquarters on the outskirts of Hull is 15 m high covering an area    
of 100 m in length by 60 m in width. Located in flat country, the building is largely isolated from other 
structures of similar height and is protected in accordance with BS 6651. 

The incoming mains supply is a 250 m long LV underground cable and all computer communication lines 
are on fibre optic cable without metal armouring. 

An underground cable provides power from the building to a lighting tower, 7 m high, 100 m from the 
building. 

To determine what protection is necessary, the risk factors are calculated as follows. 

a) Number of flashes per square kilometre per year 
For Hull, a flash density of 0.6 per square kilometre per year is applicable. (See Figure 1).

Therefore Ng = 0.6 

b) Collection area 
1) Area of structure

= 100 × 60 

= 6 000 m2 

2) Collection area of surrounding ground [see Figure C.5 and equation (1)]
= 2(100 × 100) + 2(100 × 60) + (; × 1002) 

= 63 416 m2 
NOTE It is assumed that D, the collection distance, is 100 m. 

3) Collection area of adjacent associated structures (see Figure C.5)

= 15 708 m2 
NOTE For simplicity, the area is assumed to be a semicircle. 

Consequential loss rating Exposure level 

R < 0.005 R = 0.005 to 0.0499 R = 0.05 to 0.499 R > 0.5 

1 Negligible Negligible Low Medium
2 Negligible Low Medium High
3 Low Medium High High
4 Medium High High High
NOTE Exposure level categories in Table C.7 are based on a lightning risk assessment only. If transients of other origin are 
present, consideration should be given to upgrading protectors, e.g. if in an industrial area the risk assessment suggests a surge 
protection device suitable for a medium exposure level is appropriate, the presence of inductive switching transients may make a 
high exposure level device appropriate. In these circumstances, specialist/manufacturer's advice should be sought.

; 1002×
2

-----------------------=
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4) Collection area of mains services (see Table C.1) 
i) Incoming mains service 

= 2 × 100 × 250

= 50 000 m2 

ii) Mains service to lighting tower
= 2 × 100 × 100

= 20 000 m2 

Total collection area of mains services 

= 50 000 + 20 000 

= 70 000 m2 

5) Collection area of data lines leaving the earth reference of the building
= 0 

NOTE The collection area is zero due to the use of fibre optic cable. 

The total effective collection area is: 

Ae = 6 000 + 63 416 + 15 708 + 70 000 + 0 

= 155 000 m2 

c) Probability of a strike 
The probability of a strike to the effective collection area is given by equation (2): 

p = Ae × Ng × 10–6 

= 155 000 × 0.6 × 10–6 

= 0.093 

d) Risk of occurrence 
The risk of occurrence of a lightning-induced overvoltage is given by the following. 

1) For the whole site area: 
R = F × G × H × p 

= 1 × 1 × 0.3 × 0.093 

= 0.0279 

A value for R of 0.0279 indicates an occurrence of a lightning-induced overvoltage every 36 years on 
average. 

2) For the site area associated with the incoming mains supply: 
i) Ng = 0.6 
ii) Collection area

= 6 000 + 63 416 + 15 708 + 50 000 

= 135 000 m2 

iii) Probability of a strike using equation (2) 
= 135 000 × 0.6 × 10-6 

= 0.081 

iv) Risk of occurrence (R)
= 1 × 1 × 0.3 × 0.081 

= 0.0243 

From Table C.6, the building is considered to have a consequential loss rating of 2. 

From Table C.7, it is deduced that a surge protection device should be fitted, suitable for a low exposure 
level environment. 
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3) For the site area associated with the mains supply to the lighting tower: 
i) Ng = 0.6
ii) Collection area 
= 6 000 + 63 416 + 15 708 + 20 000

= 105 000 m2

iii) Probability of a strike [using equation (2)]  
= 105 000 × 0.6 × 10–6

= 0.063 

iv) Risk of occurrence (R)  
= 1 × 1 × 0.3 × 0.063

   = 0.0189 

From Table C.6 and Table C.7, it is deduced that a surge protection device should be fitted, suitable for 
a low exposure level environment. 

Example 2 

A small water treatment control building in Lancashire has dimensions for height × length × width                     
of 6 m × 10 m × 10 m respectively. Located in hill country, the building is isolated and is protected in 
accordance with BS 6651. The mains supply is by a 250 m long LV overhead line and an overhead 
telephone line of unspecified length provides a telemetry link. 

To determine what protection is necessary, the risk factors are calculated as follows. 

a) Number of flashes per square kilometre per year 
For Lancashire, a flash density of 0.5 per square kilometre per year is applicable. (See Figure 1). 

Therefore Ng = 0.5 

b) Collection area
1) Area of structure

= 10 × 10 

= 100 m2 

2) Collection area of surrounding ground
 [see Figure C.5 and equation (1)] 

= 2 (100 × 10) + 2 (100 × 10) + (; × 1002) 

= 35 416 m2 
NOTE It is assumed that D, the collection distance, is 100 m. 

3) Collection area of adjacent associated structures 
= 0 

4) Collection area of incoming mains services
 (see Table C.1) 

= 10 × 100 × 250 

= 250 000 m2 

5) Collection area of data (telephone) lines
(see Table C.2)

= 10 × 100 × 1 000 

= 1 000 000 m2 
NOTE It is assumed that L is 1 000 m since the length of the telephone line is unspecified. 

The total effective collection area of the site is: 

Ae = 100 + 35 416 + 0 + 250 000 + 1 000 000

= 1.2855 × 106 m2 
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The effective collection area associated with incoming mains services is: 

Aem = 100 + 35 416 + 0 + 250 000 

= 285.5 × 103 m2 

The effective collection area associated with the data (telephone) line is: 

Aet = 100 + 35 416 + 0 + 1 000 000  

= 1.0355 × 106 m2 

c) Probability of a strike [see equation (2)]
The probability of a strike to the total effective collection area of the site is: 

ps = Ae × Ng × 10–6

= 1.2855 × 106 × 0.5 × 10–6 

= 0.64 

The probability of a strike to the effective area associated with incoming mains services is: 

pm = Aem × Ng × 10–6 

= 0.2855 × 10–6 × 0.5 × 10–6 

= 0.143 

The probability of a strike to the effective area associated with the data (telephone) line is: 

p = Aec × Ng × 10–6 

= 1.0355 × 106 × 0.5 × 10–6 

= 0.52 

d) Risk of occurrence 
The risk of occurrence of a lightning-induced overvoltage is given by the following:

1) For the whole site area:

R = F × G × H × p

= 1 × 2 × 1 × 0.64 

= 1.28 

A value for R of 1.28 indicates an occurrence of a lightning-induced overvoltage every 9.4 months taken 
on average over a long period. 

2) For the site area associated with the incoming mains:

R = F × G × H × pm

= 1 × 2 × 1 × 0.143 

= 0.286 

From Table C.6, the site is considered to have a consequential loss rating of 3 since its loss of operation 
would disrupt the water supply to an entire town. 

From Table C.7, it is deduced that a surge protection device should be fitted, suitable for a high 
exposure level environment. 

3) For the site area associated with the data (telephone) line:

R = F × G × H × pt

= 1 × 2 × 1 × 0.52 

= 1.04 

From Table C.6 and Table C.7, it is deduced that a surge protection device should be fitted, suitable 
for a high exposure level environment. 
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C.7 Methods of protection of installations against lightning

C.7.1 Earthing, bonding and potential equalization

In the United Kingdom, there are less than 20 thunderstorm days per year. This is sufficiently low for the 
risk of damage to an electrical installation (e.g. wiring, switches, socket outlets) due to conducted lightning 
transients from low voltage power supply lines to be negligible. Whilst damage to the electrical installation 
is negligible, damage to electronic equipment may still occur. In other countries where the ceraunic level 
exceeds 25 thunderstorm days per year, protection against transient overvoltage for the electrical 
installation may be necessary if the structure is supplied via an overhead line. 
NOTE The relationship between thunderstorm days per year and lightning flashes per square kilometre per year is given in Table 6. 

Recommendations for earthing are given in Clauses 17 and 18. The following recommendations 
complement them in order to improve earthing with the objective of achieving an equipotential reference 
plane such that electronic equipment is not exposed to differing earth reference potentials. 

Figure C.5 — Collection area of structure and adjacent associated structure
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Incoming services for structures with extensive communication systems, e.g. industrial buildings, should 
be bonded to an equipotential bonding bar which is normally in the form of a metal plate, an internal ring 
conductor or a partial ring conductor at the inner side of the outer walls or at the periphery of the volume 
to protect near ground level as appropriate. This equipotential bonding bar is connected to the ring earth 
electrode of the earthing system. An example is shown in Figure C.6. 

All external metal pipes, electric power and data lines should enter and leave the building at one point so 
that the armouring, etc., can be bonded to the main earthing terminal at this single point of entry                      
(see Figure 30). This minimizes lightning currents crossing the building internally (see Figure C.7). Where 
power and data line cables pass between adjacent structures, the earthing system should be interconnected 
and it is beneficial to have many parallel paths to reduce the currents in individual cables. Meshed earthing 
systems fulfil this objective. Lightning current effects may be further reduced by enclosing the cables in 
metal conduits, trunking, ducts, etc., which should be integrated into the meshed earthing system and 
bonded to the common cable entry and exit earth point at both ends. Figure C.6 shows a typical example of 
a mesh earthing configuration for a tower and adjacent equipment building. 

Similar principles to those which apply to the tower illustrated in Figure C.6 also apply to sensors or 
controls for well equipment (oil, water, etc.) where the bonding should include connections to the steel pipe 
of the well to reduce the potential difference between the well and the wiring. This bonding should then be 
interconnected to any other building earth to which the data line cables run. 

Structures associated with masts should have the extra protection of their own dedicated power supply or 
be provided with an isolating transformer. 
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Figure C.6 — Cables entering a building separated from a transmitter mast
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a) Bonding on entry to a building of computer and power cables to lightning earth.

b) Grounding at entry for pipes, r.f. cables etc. in reinforced concrete wall, where maximum protection is needed.

NOTE A similar method to that shown in b) is recommended for pipes, cables etc. entering a sheet metal wall of a building.

Figure C.7 — Bonding of cables and pipes at entry and exit to buildings
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C.7.2 Location of electronic equipment and cables

C.7.2.1 Location of electronic equipment within buildings

The choice of location for electronic equipment in a building depends on the building construction. For a 
building resembling a screened room, i.e. bonded metal-clad roof and walls, the location is not critical. In 
conventional modern metal framed buildings, the electronic installations should preferably be located in 
the centre of the building, and preferably should not be on the top floor where they are adjacent to the roof 
air terminations and roof lightning mesh. Nor, in preference, should the installations be positioned near 
outside walls, especially in corners of buildings. For a building comprising essentially non-conducting 
materials but with a lightning protection system, the same recommendations apply. In buildings of            
non-conducting materials which house electronic installations, considerable care should be taken in 
assigning location and specialist assistance should be sought. In particular an electronic installation 
(including its cabling) should not be located in a building adjacent to a tall structure, e.g. chimney, mast or 
tower, which could give high local fields when lightning current passes down this single route to ground. 

C.7.2.2 Location of cables between items of electronic equipment within the building

Figure C.8 and Figure C.9 illustrate the principal recommendations for internal wiring. As in the case of 
the computer location, the routeing and location of wiring within a screened room building is not critical 
but it is none the less good practice to follow the recommendations for metal framed buildings. Avoidance 
of large area loops between the mains supply and the electronic installation wiring is strongly 
recommended. 

It is desirable to run mains wiring and electronic equipment cables side-by-side to minimize loop areas. 
This can be achieved by using a pair of adjacent ducts or a duct containing a metal partition between the 
cables. In Figure C.9, meshed earthing is employed locally on the floor of the building and star point 
earthing is used overall. This combination of earthing systems is known as hybrid earthing. 

Wiring to electronic equipment within the building should not be installed adjacent to possible lightning 
carrying conductors, e.g. roof conductors, external wall conductors. Wiring should be at floor level and 
should avoid loops in the vertical plane. Wiring between floors should be as in Figure C.9. The layout shown 
in Figure C.9 can also be used for equipment laid out horizontally in several adjacent rooms of a long 
building, in which case the metal trunking should be rearranged horizontally to join together separate 
blocks of equipment. 

For buildings constructed of non-conducting materials, the wiring layout described in this subclause is 
essential to minimize damage to equipment or corruption of data. Where these wiring layout 
recommendations in this subclause for wiring layout are not practical, the use of surge protection devices 
is recommended and specialist advice should be sought. 

C.7.3 Protection of building-to-building data lines

Where data lines pass between separate buildings, or between separate sections of one building which are 
not structurally integral (e.g. new wings added to a building joined by brick corridors, etc. or sections of a 
building separated by expansion or settlement gaps which are not bonded across), special care should be 
taken regarding protection. 

Where possible, fibre optic links should be used to isolate completely the electronic circuits of one building 
from the other. This is the optimum method for multi-channel data links for complete freedom from 
electromagnetic compatibility (EMC) problems of all kinds, not only lightning. However it is recommended 
that fibre optic cables with metal armouring or draw wires inside should not be used. (If such cables are 
used, the armouring and draw wire should be bonded directly or indirectly via surge protective devices to 
the main cable entry bonding bar at its entry point into each of the buildings. No further bonds to the fibre 
optic cable armour or draw wire should be made.) 

Where fibre optic links are not an option and conductive data lines are needed, e.g. wire pairs, or coaxial 
cables or LANs, precautions should be taken to prevent damaging transients flowing along the line causing 
multiple damage at both ends. Earthing systems of structures should be interconnected using the armour 
on cables, braids or metal trunking, raceways, conduits, etc., which are electrically continuous and bonded 
to the earth systems of the buildings at each end. In industrial installations, the armouring on multiple 
pair cables should be bonded at both ends to the structure. Where many such cables are available in 
parallel, very good interlinking of the system exists, resulting in very low induced voltage in the 
instrumentation loops (for sample calculations see C.10). In addition, earth cables should be installed to 
provide positive links from structure to structure. 
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Where coaxial cables are installed between buildings, the conductive sheaths of these cables should be 
bonded to the earthing system of the building at the entry/exit point of the building. 

In certain types of coaxial or screened systems, it is permissible to bond the cable only once to earth. Where 
necessary a suitable surge protection device should be used to provide additional bonding. (This is the case 
in certain types of LAN and details are given in ECMA 97 [3]) In most cases, protection is also necessary 
for the inner core(s) within a coaxial cable (see C.11). 

Where only one or a small number of lines go from building to building, as in the case of instrument data 
or telephone lines, and where fibre optics are not an option, surge suppressors should be fitted which will 
crowbar (or clamp) the anticipated partial lightning current to earth, e.g. with a gas tube or semiconductor 
crowbar (or clamp) device and allow only a "let-through" voltage within the appropriate level for the 
equipment. A typical system for the earthing of surge suppressors is shown in Figure C.10. 
Recommendations for surge protection devices are given in C.13. 

A combination of the methods discussed in this subclause is possible, e.g. using opto-isolator devices for 
signal or instrumentation lines (including intrinsically safe systems within a potentially explosive 
atmosphere) in conjunction with bonded armouring of cables to keep transients within an acceptable 
voltage range. Except in the case of long fibre optic links, high impedance isolation devices are not 
satisfactory on their own unless they have a withstand voltage greater than 100 kV owing to the large 
potential difference occurring between unprotected buildings resulting from lightning current flow into the 
ground from one of them. 

NOTE Minimal protection is required internally for b). Buildings with discrete down conductors (stanchions, tapes, etc.) 
should use a combination of c) and d) and the hybrid earth principle of Figure C.9.

Figure C.8 — Methods of reducing induced voltages
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NOTE 1 The principle of minimizing loop areas can be applied to equipment laid out laterally. All interconnections are in one 
cable duct to minimize areas of loops as in c) of Figure C.8.

NOTE 2 XXXX Represents steel reinforcement or other metallic floor constructions.

Figure C.9 — Hybrid earth system applied to equipment in multi-floor building
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C.7.4 Protection of equipment having component parts on the outside of buildings or connected 
to towers, masts or process vessels 

Where component parts of equipment are mounted on the outside of buildings (i.e. on the side walls or roof) 
or are connected to towers, masts or process vessels the following hazards exist. 

a) Current injection from a direct strike. Current injection from a direct strike should be prevented 
wherever possible by suitably placed air terminations, covers, enclosure of sensors and wiring in order 
to minimize the chance of a direct lightning strike to sensors and wiring (see Figure C.11, Figure C.12 
and Figure C.13). Cables attached to masts should be located within the mast to give protection from 
direct injection, using, for example, a shroud diverter. Where whip aerials etc. cannot be protected from 
strikes by an air termination, some form of protection, such as a shroud diverter, should be incorporated 
at the base of the aerial to limit any surge currents into the down leads. 

a) Incorrect installation of surge suppressors giving rise to large transients.

NOTE These transients can arise from the earth line inductance to the earth reference point B.

b) Recommended installation of surge suppressors.

NOTE Transients minimized by connecting the zero voltage reference to earth reference point B´ by the most direct route.

Figure C.10 — Earth connection from zero voltage reference of equipment to earth of 
surge protection devices
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b) Inductive and resistive voltages. The protection methods described in item a) to prevent strike contact 
to electronic equipment, wiring and exposed items (sensors, aerials, etc.) will reduce resistive and 
inductive voltages. Wiring should be installed in metallic conduits or in locations where the structure 
provides suitable screening e.g. for steel lattice towers, inside the corners of the L-shaped section 
members or within metal tubular masts (see Figure C.14). In Figure C.14, the relative values of currents 
to be expected in individual cables in four positions are given. From the braid or sheath resistance and 
length, the induced voltage can be estimated. See C.12 for a sample calculation. Where the wiring uses 
a low partial current route and is screened, induced voltages will be minimized. However very short 
bonding leads at each end of shielding, braided tubes etc. should be used to reduce inductive voltages. 
This technique is satisfactory where the induced voltages can be shown to be less than the immunity level 
(see 3.1.18) of the equipment being protected. Where the induced voltage cannot be restricted to less than 
the immunity level, surge protection devices should be fitted. 

Overall protection for a tower and its associated equipment building is shown in Figure C.6 and 
illustrates many of the points described above including routeing, screening, bonding, interconnection of 
earths, etc. 

NOTE This is recommended in CCITT Publication, The protection of telecommunication lines and equipment against lightning 
discharges, Chapter 6, Protective practices for specific parts of telecommunications networks 1978. [4] 

C.8 Characteristics and effects of lightning
NOTE For the general characteristics of lightning, see 4.2. 

C.8.1 Additional characteristics of lightning relevant to electronic equipment

The maximum rate of rise (di/dt) values are as follows: 

Other parameters of the lightning pulse are important for other aspects of lightning damage, but peak 
current and peak di/dt are the principle ones for interference voltage considerations, and the duration of 
the pulse is significant for the energy ratings of suppressors. The representation of a severe negative strike 
to ground is shown in Figure C.15. 

Lightning-induced transients can have two major effects on electronic equipment. The most serious is 
equipment damage which might easily be caused by a single stroke. The second major effect, which is 
computer data and software corruption or disturbance ("upset"), might also be made worse by the multiple 
pulse aspect of lightning. The combination of the first return stroke plus numerous re-strikes (as many as 
twenty in a severe case), all occurring in a period of 1 s to 2 s, can cause considerable problems for the 
correct operation of a computer, unless error checking is used, which can reject "nonsense" data for periods 
up to 2 s. 

C.8.2 Strike points for lightning

The positions of strike points to level terrain are very random, although tall trees and houses may be 
slightly more at risk than small trees and houses. However strikes to flat ground between buildings are 
quite common when the buildings are separated by a distance of more than twice the height of the 
individual buildings. 

In process plant installations, strike locations will tend to favour chimneys, taller fractionating columns, 
tall lamp posts etc. so minimizing strikes to parts of the plant close to these tall features. However, parts 
of buildings which are outside the 45° cone of protection of the tall buildings are liable to be struck.            
(See Figure C.16). 

Maximum rate of rise
(di/dt)
kA/4s

Strokes exceeding (di/dt)
%

200 1
30 50
10 99
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a) Exposed sensor and cable on process vessel.

b) Exposed cable on roof.

Figure C.11 — Direct injection into exposed electrical system

a) Exposed sensor and cable on process vessel b) Exposed cable on roof

Figure C.12 — Protection from direct injection
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Figure C.13 — Protection of cables located alongside tall vessels and bonding at roof level
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Figure C.14 — Locations where high, medium or low lightning current can be expected to 
flow through cables associated with a reaction vessel

NOTE The initial strike may be followed by several shorter duration lower amplitude pulses of current called subsequent 
strikes or restrikes.

Figure C.15 — Lightning current characteristics for severe negative strike
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Electronic equipment on towers or tall buildings is especially at risk, not only because of the risk of direct 
strike, but also because of the relatively high exposure of wiring and other associated equipment. Such 
systems should be carefully protected. 

A notional process plant in plan and elevation showing areas subject to being struck is illustrated                                
in Figure C.16. For buildings up to 20 m in height, the 45° cone of protection system is a good working rule 
in considering lightning protection. However, for tall buildings, towers, etc. (over 20 m tall), the rolling 
sphere method is better for identifying vulnerable areas, especially as it permits an assessment of the 
tendency for strikes to occur to the sides of such structures. A rolling sphere radius of 20 m is recommended. 

In Figure C.16, it is assumed that electronic equipment is located within buildings A and B and that there 
are connecting cables between. However, it can be seen that strikes are possible to A and to parts of B, as 
well as to the ground around them both. Thus, in such an example, ground currents from nearby strikes to 
ground, or to connected or unconnected buildings need to be taken into account in assessing the nature and 
extent of the protection that is necessary. 

Figure C.16 — Strike points on plant
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C.9 Lightning-induced transients and protection principles
NOTE This clause describes the induced voltage coupling mechanisms, magnitudes, waveshapes and provides guidance on 
establishing safe transient levels by the TCL/ETDL principle. (See 3.1.18, 3.1.19 and C.9.6.) 

C.9.1 Resistively-induced voltage

When a building is struck by lightning, the current flow into the earth develops a large voltage between the 
building structure, metalwork and the lightning protection system, considered as a whole, and a remote 
earth. This large voltage is one of the reasons that lightning current flows in the external conducting parts 
(e.g. cables) which are bonded to the building and run to remote earths. The voltage so produced is 
primarily a resistive voltage but on the fast rising part of the lightning waveform, inductive and 
transmission line effects will also occur at least to a small extent. 

Any current flowing in cable screens and armouring results in resistive voltages which are injected by way 
of the wiring into electronic equipment as common mode voltages at both ends of the cable. 

For that part of the spectrum of the lightning pulse where there is the most energy, say up to 100 kHz, 
earth resistance and cable screening, armouring, etc. act as resistors so producing resistive voltages similar 
in waveform to the lightning current pulse. However in certain circumstances (e.g. long underground 
sheathed cables) considerable elongation of the current pulse will occur (up to perhaps 1 000 4s) and the 
design of protection equipment should take this into account. 

C.9.2 Inductive voltage

Lightning current, either flowing in a conductor or in the arc channel, produces a time-varying magnetic 
field, which at distances up to 100 m is proportional to the time-varying current. This time-varying 
magnetic field produces two effects: 

a) a magnetic self-inductance L in a cable carrying the current (e.g. for a typical wire about 2 mm in 
diameter L = 1 4H/m); 

b) a mutual coupling to loops incorporating the current carrying conductor (transfer inductance = MT) or 
in completely separate loops (mutual inductance = M). 

In each case, the voltages produced are proportional to di/dt multiplied by L, MT, or M (see Figure C.17). 

Also, for a single conductor carrying the current, the field strength is inversely proportional to the distance 
from the conductor. For a more complex situation, calculations can evaluate L, MT, or M. For example 
lightning currents passing down the stanchions of a 15 stanchion building shown in Figure C.4 give 
contours of constant MT relative to the stanchion. This enables calculations of mutual and transfer 
inductive voltages to be performed as given in the example in Figure C.4. 

It is also important to take into account the inductance of earth leads to equipment and surge suppressors 
and "pigtail" earthing of cable screens. 

C.9.3 Current injection from direct strike

Direct lightning strikes to installation wiring or exposed electrical systems such as sensor heads or aerials 
(see Figure C.11) may inject sufficient current into the wires to cause explosive vaporization. This can cause 
considerable physical damage to the installation wiring over a considerable length. Enclosures for the 
wiring e.g. plastics or metal conduits or trays and other items very close to the wiring could also be split 
apart or damaged. 

Owing to the very high voltages associated with direct injection, damage to other circuits is possible as a 
result of high voltage breakdown and flashover on the terminal blocks, plugs and sockets, etc. so injecting 
large currents or voltages into the other circuits and causing multiple failure in them. This is particularly 
relevant to situations involving potentially explosive atmospheres. By suitable relocation of wiring, wiring 
covers and/or the fitting of a suitable air termination, such direct contact should be prevented. (See C.7.4). 

C.9.4 Electric field coupling

Field strengths have to be taken into account in the whole striking area immediately before the         
formation of the main discharge when their values are close to the breakdown strength of air 
(approximately 500 kV/m).

At the formation of the main discharge, the field breaks down and field changes of                           
approximately 500 kV/m·4s can occur. The effects of such a field change are not normally a serious problem 
since protection against the resistive and inductive effects of lightning will also give protection from electric 
field coupling. 
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C.9.5 Lightning electromagnetic pulse- (LEMP)- induced voltage

The term LEMP (see 3.1.23) was coined to correspond with another electromagnetic phenomenon, namely 
nuclear electromagnetic pulse (NEMP). There are important differences in the spectrum and magnitude of 
the two effects since NEMP produces much faster rising pulses (a rise time of 10 ns) with very severe 
amplitude, and the NEMP only interacts with systems as a radiated pulse. By comparison the radiated 
pulse from lightning is relatively small. Strikes either to the building under consideration or to the ground 
nearby do not produce true LEMP but principally a near-field magnetic coupling which gives inductive 
voltages (and resistive voltages) as described in C.9.1 and C.9.2. 

Lightning-induced electric field pulses within buildings containing electronic equipment are usually 
negligible. In exceptional cases, external wiring might be at risk, unless it is screened or enclosed (which 
in any case is necessary for protection against injected currents and induced voltages). 

In general, the worst effects of LEMP are prevented by adopting precautions necessary for protection 
against direct lightning strikes. Direct strikes in any case produce much more severe transients than 
LEMP and direct strike protection is of primary importance, the protection against LEMP being a 
secondary advantage and so ensuring that LEMP effects are negligible. 

C.9.6 Transient control level (TCL)/Equipment transient design level (ETDL) principle

For any electronic equipment operating in any transient or other interference environment, protection can 
be designed to provide any degree of protection which is economically feasible or necessary on safety or 
other grounds. 

Once the pass/fail criteria are determined for equipment, (e.g. no damage to internal components) suitable 
tests will demonstrate the maximum level of transients, called the ETDL, at which the equipment will 
operate successfully. In the case of lightning, this means that up to say N volts of transient, applied in 
common or differential mode, the equipment will not suffer component damage. The equipment then has 
an ETDL of N volts. When installing the equipment it is necessary to ensure that transients in the wiring 
connected to the equipment are at a level of say P volts, which will be below the ETDL of N volts, (to allow 
for ageing, safety factors in the calculations, etc.). P is called the transient control level (TCL) and N – P is 
called the safety margin. 

To determine whether a surge protection device can control a transient voltage to within the desired 
transient control level, its let-through voltage, with a voltage waveform of appropriate severity, should be 
established. 

Matching the ETDLs of equipment within the installation with the transient level of the installation will 
ensure a safe system, provided attention is paid to earthing and bonding techniques to maintain low 
transient levels. In particular, attention has to be paid to electronic equipment and surge protection device 
earthing to prevent significant resistive, and especially inductive voltages, which occur on protector device 
earth leads from being added to the basic protector let-through voltage. 

C.9.7 Protection principles

C.9.1, C.9.2, C.9.3, C.9.4 and C.9.5 refer to the various coupling mechanisms from lightning. Except in the 
case of very exposed aerials, equipment protected against the resistive/inductive effects of a lightning 
strike on or close to a building will be protected from the electric field and the LEMP aspects of it. 

Direct injection of lightning current into electronic equipment should be prevented owing to the very 
serious damage caused (see C.7.4). A major factor in the importance of resistive and inductance voltages is 
that they are both injected with low source impedance hence the resulting energy in the transients is much 
higher than those available from either LEMP or electric field coupling. Therefore it is the magnitude of 
resistive- and inductive- induced voltages and currents which provide the basis for a quantitative 
assessment of transients and the specifications for protection devices. 

Lightning protection should therefore protect against the high voltage which might result from a strike, 
and which can cause large currents to flow into cables and arrestors due to the low source impedance. 

For protection techniques to be successful, the following conditions should be satisfied. 
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a) Survivability. Protection devices or techniques should be able to survive the full severity of transient 
overvoltages to be encountered at the device location. 

b) Transient control level. Protection should achieve a transient control level below the ETDL of the 
equipment being protected. Surge protection techniques such as connecting leads and earth cables may 
add significantly to the transient control level achieved.

c) System compatibility. Any form of protection added should not interfere with the normal operation of 
the system to be protected. 

Particular care may be necessary for the protection of high speed communication systems and 
intrinsically safe circuits. For applications in potentially explosive atmospheres, attention should be paid 
to the provisions of BS 5345-4. 

C.10 Sample calculations of induced voltage in instrumentation loops

The sample calculation of induced voltage involves the use of armouring as part of the earth 
interconnection system of many parallel instrument cables spreading out to a plant. 

Take the case of 100 cables with aluminium armouring, say 65 strands of 1 mm diameter on each cable 
with a resistivity of 3.0 × 10–8 7·m, cables 100 m long. 

For 100 cables in parallel, each taking one-hundredth of the total current of say 100 kA flowing from 
computer room to plant, the current would be 1 kA per cable. 

Therefore the common mode induced voltage is given by: 

In practice, the current distribution among the cables will not be uniform, but with the assistance of other 
earth cables in parallel with the instrument cables and also power cables with their armouring bonded, the 
current in each of the instrument cables is unlikely to exceed 1 kA by a large factor. 

C.11 Sample calculation for protection of inner core(s) of coaxial cable

Consider the case of 20 m of shielded cable with the shield bonded at both ends. 10 % of the lightning 
current flows through the cable and the cable shield has a resistance of 5 7/km. 

For a 200 kA strike, the voltage produced is given by: 

Resistance of each cable = (8)

= 

= 59 m7

where
Ô is the resistivity; 
l is the length of the cable; 
A is the cross-sectional area of the armouring. 

V = R × I 

= 59 × 10–3 × 1 × 103

= 59 V 

V = R × I 

=0.1 × 200 × 103 × 0.1
= 2 000 V 

Ô l×
A

-----------

3.0 10 8– 100××

65 0.0012× ;
4
---×

-------------------------------------------
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For a 20 kA strike, the voltage produced is given by: 

These resistive voltages are coupled fully into the internal wires. 

If the cable were placed on a bonded cable tray, there would be a preference for current to flow in the tray. 
In typical cases, only 10 % of current would flow in the coaxial cable. 

For a 200 kA strike, the voltage produced is given by: 

For a 20 kA strike, the voltage produced is given by: 

Depending on the use of the cable, damage may or may not occur, as in the following examples. 

a) If the cable was the feed from a thermionic valve radio transmitter to an aerial, a voltage greater     
than 2 000 V is unlikely to cause damage. 
b) If the cable was a part of a robust computer network, a voltage of 2 000 V would probably cause 
damage; voltages of 200 V or 20 V probably would not. 
c) If the cable carried an RS 232 (V 24) link, only the 20 V value would be acceptable. 2 000 V and 200 V 
would cause damage. 

C.12 Sample calculation of induced voltage in wiring

Figure 14 shows the relative values of currents in individual cables alongside or inside a process vessel or 
similar object. As can be seen, the currents are a strong function of position relative to the tower and other 
metal components. Values of induced voltage appropriate to the various positions identified may be 
calculated as follows. 

a) For a cable protected by a cable tray, assuming a cable screen current of 400 A, a tower of 30 m height 
and a cable screen resistance of 10 m7/m:

The induced common mode voltage is given by: 

b) For a cable protected by a cable tray and pipes and assuming a current of 100 A:
The induced common mode voltage is given by: 

c) For a cable inside the vessel, or inside a metal cylinder, the induced voltage would be negligible.

V = R × I 

= 0.1 × 20 × 103 × 0.1
= 2 00 V 

V = R × I 

= 0.1 × 200 × 103 × 0.1 × 0.1
= 200 V 

V = R × I 

= 0.1 × 20 × 103 × 0.1 × 0.1
= 20 V 

Total resistance = 30 × 10 × 10–3 
= 0.3 7

V = R × I  
= 0.3 × 400
= 120 V

V = R × I  
= 0.3 × 100
= 30 V
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C.13 Surge protection devices, location categories and testing

C.13.1 Location categories

C.13.1.1 General 

As a mains transient, represented by a 1.2/50 4s voltage pulse, propagates through a building, the 
magnitude of current it can source diminishes (due to the inductance of the mains cables). This effect is 
represented by the three location categories C, B and A. Category C is on the supply side of an incoming 
power board, category B represents the mains distribution system and category A represents the load side 
of a socket outlet. 

Within a given location category, the severity levels of the transients encountered will increase as risk of a 
transient occurring increases. This can be represented by the system exposure level, which in turn can be 
derived from the risk assessment. 

C.13.1.2 Data/signal cables

All data/signal line surge protection devices fall into location category C irrespective of location as the 
slower 10/700 4s voltage pulse used to represent a data line transient is not attenuated by a cable to the 
same extent as a mains transient. 

C.13.1.3 Mains power

C.13.1.3.1 Location category C

Surge protection devices installed in the following locations fall into category C: 

a) on the supply side of incoming power distribution boards/switchgear (i.e. boards that bring power into 
a building, from the supply authority, HV/LV transformer or another building);

b) on the load side of outgoing power distribution boards/switchgear (i.e. boards that take power to other 
buildings, external lights, pumps etc.); 

c) on the outside of a building.

C.13.1.3.2 Location category B

Protection devices installed in the following locations fall into category B: 

a) on a power distribution system, between the load side of the incoming mains power distribution 
board/switchgear and supply side of a socket outlet/fused connection unit; 

b) within apparatus that is not fed via a socket outlet/fused connection unit; 

c) load side of socket outlets/fused connection units located less than a 20 m cable run from category C. 

C.13.1.3.3 Location category A

Protection devices installed on the load side of socket outlets/fused connection units and more than a 20 m 
cable run from category C, fall into category A. 
NOTE Category A does not appear in small buildings where socket outlets are all less than 20 m from category C. 

C.13.2 Magnitude of representative wave forms for testing mains surge protection devices

An appropriate test level is selected from Table C.8, Table C.9 and Table C.10 for the location category and 
level of system exposure of the surge protection device under test. 

Table C.8 — Location category A (mains)

System exposure Peak voltage
kV

Peak current 
A

Low 2 166.7 
Medium 4 333.3 
High 6 500
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Table C.9 — Location category B (mains)

Table C.10 — Location category C (mains)

C.13.3 Testing mains surge protection devices

The test generator for categories C and B is a combination wave generator, capable of producing 1.2/50 4s 
voltage and 8/20 4s current waveform (see C.13.7). For category A, a non-inductive output resistor is added 
to limit current to the appropriate value. The short circuit current waveform will no longer be 8/20 4s. 

A test method for surge protection devices is given in section 24 of UL 1449:1985 [5]. 

C.13.4  Magnitude of representative waveform for testing data line barriers

An appropriate test level is selected from Table C.11 for the exposure of the surge protection device 
selected. 

Table C.11 — Location category C (data lines)

C.13.5 Testing data line surge protection devices

C.13.5.1 High current impulse life test

A combination wave generator described in C.13.3 is suitable for these tests.

The test method is given in 5.6 of ITU-T K.12 [6]. 

C.13.5.2 Let-through voltage tests

A suitable test generator is given in Figure 1 of CCITT IX K17:1984 [7]. 

A test method is given in paragraph 24.3 of UL 1449:1985 [5].

C.13.6 Information to be provided by manufacturers of surge protection devices

C.13.6.1 Information on transient performance 

Manufacturers of surge protection devices should be requested to provide the following information on 
transient performance. 

a) Let-through voltage, e.g. 850 V, all modes, test 6 kV, 1.2/50 4s, 3 kA 8/204s.
NOTE 1 This is a test value for the complete surge protection device, not a theoretical value.

NOTE 2 The let-through voltage of a surge protection device takes into account the response time of the device i.e. a slow response 
time will result in a high let-through voltage. Lightning transients are not particularly fast; response time is more important for 
faster transients e.g. NEMP etc. The response time of a parallel-connected protector is often overshadowed by inductive voltage 
drops on the connecting leads. 

System exposure Peak voltage
kV

Peak current 
kA

Low 2 1
Medium 4 2
High 6 3

System exposure Peak voltage
kV

Peak current
kA

Low 6 3
Medium 10 5
High 20 10

System exposure High impulse current test

kA

Let-through voltage test

Voltage
kV

Current
A

Low 2.5 1.5 37.5
Medium 5 3 75
High 10 5 125
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b) Mode of protection, e.g. line-to-earth, line-to-neutral, neutral-to-earth for mains or line-to-line or 
line(s)-to- earth for data. 

c) Maximum surge current, e.g. 20 000 A, 8/20 4s.
NOTE 1 This is a test value for the complete surge protection device, not a theoretical value.

NOTE 2 The energy handling of a protection device is implied by the maximum surge current. The use of energy ratings as an 
indicator of the comparative merit of differing designs can be misleading, as the energy deposited in a protector by a transient 
current source depends on the suppression level (let-through voltage). Therefore a lower energy rating does not necessarily mean 
a lower capability of survival.

d) System impairment. If the surge protection device impairs the operation of the system after a 
transient has passed, full details of any effect should be given. [See C.13.6.2, item e)]. 

A gas-discharge tube used as a surge protection device connected across a mains power supply can short 
circuit the supply when it operates. A large mains current will flow through the tube which may cause 
disruption of the power supply and/or destruction of the tube. 

C.13.6.2 Information on passive state performance 

Manufacturers of surge protection devices should be requested to provide the following information on 
passive state performance: 

a) nominal operating voltage; 

b) maximum operating voltage; 

c) leakage current; 

d) current rating; 

e) system impairments. 

Any factor that may affect operation of the system should be quoted, e.g.: 

1) in-line impedance; 

2) shunt capacitance; 

3) bandwidth; 

4) voltage standing wave ratio (VSWR); 

5) reflection coefficient. 

C.13.7 Combination wave test generator

C.13.7.1 General

The simplified circuit diagram of the generator is shown in Figure C.18. 

The values of the different elements Rs1, Rs2, Rm, Lr and Cc are defined so that the generator delivers              
a 1.2/50 4s voltage surge (at open circuit conditions) and a 8/20 4s current surge into a short circuit, i.e. the 
generator has an effective output impedance of 2 7.

For convenience, an effective output impedance is defined for a surge generator by calculating the ratio of 
peak open circuit output voltage and peak short circuit current. Such a generator with a 1.2/50 4s open 
circuit voltage waveshape and a 8/20 4s short circuit current waveshape is referred to as a Combination 
Wave Generator (CWG). 
NOTE Switchover from voltage to current happens as a function of the input impedance during surges to equipment due either to 
proper operation of the installed protection devices, or to flashover or component breakdown if the protection devices are absent or 
inoperative. Therefore the 1.2/50 4s voltage and the 8/204s current waves need to be available from the same test generator output 
as instantaneously required by the load.
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Table C.12 — Definitions of the waveshape parameters 1.2/50 4s

C.13.7.2 Characteristics and performance of the combination wave generator

NOTE A generator with a floating output is preferred.

Definitions In accordance with BS 923-2 In accordance with BS 5698-1 

Front time

4s

Time to half value

4s

Rise time                    
(10 % to 90%)

4s

Duration
 (50 % to 50 %) 

4s

Open circuit voltage 12 50 1 50
Short circuit current 8 20 6.4 16
NOTE The waveforms 1.2/50 4s and 8/20 4s have been generally defined in accordance with BS 923-2, as shown in Figure C.19  
and Figure C.20. More recent recommendations are based on waveform definitions in accordance with BS 5698-1 as shown in Table 
C.12. Both of these definitions are valid for this standard and refer to a single generator.

Open circuit output voltage: At least as low as 0.5 kV to at least as high as 6.0 kV for 
category B tests and 20 kV for category C tests. 

Waveshape of the voltage surge: See Figure C.19 and Table C.12. 
Short circuit output current: At least as low as 0.25 kA to at least as high as 3.0 kA for 

category B tests and 10 kA for category C tests. 
Waveshape of the current surge: See Figure C.20 and Table C.12. 
Polarity: Positive/negative. 
Phase shifting: In a range between 0° to 360° versus the a.c. line phase angle. 
Repetition rate: At least 1 per min. 

Figure C.17 — Inductance
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NOTE U is the high voltage source.

Rc is the changing resistor.

Cc is the energy storage capacitor.

Rs is the pulse duration shaping resistor.

Rm is the impedance matching resistor.

Lr is the rise time shaping inductor.

Figure C.18 — Simplified circuit diagram of the combination wave generator

Figure C.19 — Waveshape of open circuit voltage (1.2/50 4s)
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Figure C.20 — Waveshape of short circuit current (8/20 4s)
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